Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
In mathematics, a planar lamina (or plane lamina) is a figure representing a thin, usually uniform, flat layer of the solid. It serves also as an idealized model of a planar cross section of a solid body in integration.
Planar laminas can be used to determine moments of inertia, or center of mass of flat figures, as well as an aid in corresponding calculations for 3D bodies.
Definition
A planar lamina is defined as a figure (a closed set) D of a finite area in a plane, with some mass m.
This is useful in calculating moments of inertia or center of mass for a constant density, because the mass of a lamina is proportional to its area. In a case of a variable density, given by some (non-negative) surface density function the mass of the planar lamina D is a planar integral of ρ over the figure:
Properties
The center of mass of the lamina is at the point
where is the moment of the entire lamina about the y-axis and is the moment of the entire lamina about the x-axis:
with summation and integration taken over a planar domain .
Example
Find the center of mass of a lamina with edges given by the lines and where the density is given as .
For this the mass must be found as well as the moments and .
Mass is which can be equivalently expressed as an iterated integral: