Names | |
---|---|
Other names Porphin | |
Identifiers | |
CAS Number | |
3D model (JSmol) | |
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.002.690 |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
InChI
| |
SMILES
| |
Properties | |
Chemical formula | C20H14N4 |
Molar mass | 310.35196 g/mol |
Appearance | Dark red, shiny leaflets |
Melting point | N/A |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Y verify (what is ?) Infobox references |
Porphine or porphin is an organic compound of empirical formula C20H14N4. It is heterocyclic and aromatic. The molecule is a flat macrocycle, consisting of four pyrrole-like rings joined by four methine bridges, which makes it the simplest of the tetrapyrroles.
The nonpolar tetrapyrrolic ring structure of porphine means it is poorly soluble in most organic solvents and hardly water soluble. As a result, porphine is mostly of theoretical interest. It has been detected in GC-MS of certain fractions of Piper betle.
Porphine derivatives: porphyrins
Further information: PorphyrinSubstituted derivatives of porphine are called porphyrins. Many porphyrins are found in nature with the dominant example being protoporphyrin IX. Many synthetic porphyrins are also known, including octaethylporphyrin and tetraphenylporphyrin.
- Common porphyrins
- Derivatives of protoporphyrin IX are common in nature, the precursor to hemes.
- Octaethylporphyrin (H2OEP) is a synthetic analogue of protoporphyrin IX. Unlike the natural porphyrin ligands, OEP is highly symmetrical.
- Tetraphenylporphyrin (H2TPP)is another synthetic analogue of protoporphyrin IX. Unlike the natural porphyrin ligands, TPP is highly symmetrical. Another difference is that its methine centers are occupied by phenyl groups.
Further reading
- Budavari, Susan (1989). "7574. Porphine". The Merck Index (11th ed.). Merck & Co., Inc. p. 1210. ISBN 0-911910-28-X. LCCN 89-60001.
References
- "Porphyrin". Encyclopedia of Inorganic and Bioinorganic Chemistry. Wiley-VCH. 2011. doi:10.1002/9781119951438.eibd0638. ISBN 9781119951438.
- Senge, Mathias O.; Davis, Mia (2010). "Porphyrin (porphine) — A neglected parent compound with potential" (PDF). Journal of Porphyrins and Phthalocyanines. 14 (07): 557–567. doi:10.1142/s1088424610002495. ISSN 1088-4246.
- Karak S, Das S, Biswas M, Choudhury A, Dutta M, Chaudhury K, De B (December 2019). "Phytochemical composition, β-glucuronidase inhibition, and antioxidant properties of two fractions of Piper betle leaf aqueous extract". Journal of Food Biochemistry. 43 (12): e13048. doi:10.1111/jfbc.13048. PMID 31581322. S2CID 203661105.
- Paul R. Ortiz de Montellano (2008). "Hemes in Biology". Wiley Encyclopedia of Chemical Biology. John Wiley & Sons. doi:10.1002/9780470048672.wecb221. ISBN 978-0470048672.
- Jonathan L. Sessler; Azadeh Mozaffari; Martin R. Johnson (1992). "3,4-Diethylpyrrole and 2,3,7,8,12,13,17,18-Octaethylporphyrin". Org. Synth. 70: 68. doi:10.15227/orgsyn.070.0068.
- Lindsey, Jonathan S. (2000). "Synthesis of meso-substituted porphyrins". In Kadish, Karl M.; Smith, Kevin M.; Guilard, Roger (eds.). Porphyrin Handbook. Vol. 1. pp. 45–118. ISBN 0-12-393200-9.