Misplaced Pages

PrimPol

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Primpol) Protein-coding gene in the species Homo sapiens
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "PrimPol" – news · newspapers · books · scholar · JSTOR (October 2014) (Learn how and when to remove this message)
PRIMPOL
Identifiers
AliasesPRIMPOL, CCDC111, MYP22, primase and DNA directed polymerase, Primpol1, PrimPol
External IDsOMIM: 615421; MGI: 3603756; HomoloGene: 14065; GeneCards: PRIMPOL; OMA:PRIMPOL - orthologs
Gene location (Human)
Chromosome 4 (human)
Chr.Chromosome 4 (human)
Chromosome 4 (human)Genomic location for PRIMPOLGenomic location for PRIMPOL
Band4q35.1Start184,649,667 bp
End184,694,963 bp
Gene location (Mouse)
Chromosome 8 (mouse)
Chr.Chromosome 8 (mouse)
Chromosome 8 (mouse)Genomic location for PRIMPOLGenomic location for PRIMPOL
Band8|8 B1.1Start46,575,594 bp
End46,617,212 bp
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • cerebellar hemisphere

  • right hemisphere of cerebellum

  • Achilles tendon

  • gonad

  • anterior pituitary

  • right uterine tube

  • right ovary

  • left ovary

  • tibial nerve

  • body of uterus
Top expressed in
  • granulocyte

  • Paneth cell

  • blastocyst

  • zygote

  • medullary collecting duct

  • blood

  • morula

  • yolk sac

  • thymus

  • genital tubercle
More reference expression data
BioGPS
n/a
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

201973

408022

Ensembl

ENSG00000164306

ENSMUSG00000038225

UniProt

Q96LW4

Q6P1E7

RefSeq (mRNA)
NM_001300767
NM_001300768
NM_152683
NM_001345891
NM_001345892

NM_001345893
NM_001345894
NM_001345895
NM_001345896
NM_001345897
NM_001345898
NM_001345899
NM_001345900
NM_001345901

NM_001001184

RefSeq (protein)
NP_001287696
NP_001287697
NP_001332820
NP_001332821
NP_001332822

NP_001332823
NP_001332824
NP_001332825
NP_001332826
NP_001332827
NP_001332828
NP_001332829
NP_001332830
NP_689896

NP_001001184

Location (UCSC)Chr 4: 184.65 – 184.69 MbChr 8: 46.58 – 46.62 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

PrimPol is a protein encoded by the PRIMPOL gene in humans. PrimPol is a eukaryotic protein with both DNA polymerase and DNA Primase activities involved in translesion DNA synthesis. It is the first eukaryotic protein to be identified with priming activity using deoxyribonucleotides. It is also the first protein identified in the mitochondria to have translesion DNA synthesis activities.

Etymology

PrimPol was identified in a bioinformatic study and initially presumed to only have primase activity. Subsequent in vitro and in vivo studies have shown it to have both primase and polymerase activities that both localise to the catalytic domain of PrimPol. For that reason, this protein was assigned the name PrimPol.

Function

PrimPol is a DNA primase and DNA polymerase involved in DNA replication. Unlike the other known DNA polymerases, PrimPol can initiate replication without the need of an RNA primer and can extend from primers produced by PrimPol. PrimPol preferentially initiates replication using deoxynucleotides, rather than ribonucleotides and will only extend from a nascent DNA chain using deoxynucleotides. PrimPol exhibits a 1000-fold bias towards Watson-Crick base pairing when extending DNA chains. PrimPol plays an as yet unidentified role in unperturbed replication, PrimPol depleted cells slow replication fork progression, proliferate slower and show an increased RPA foci.

Translesion DNA synthesis

PrimPol is predicted to play a role in translesion DNA synthesis. When the replication fork reaches a site of DNA damage it stalls, which can lead to lethal single stranded gaps and double strand breaks. PrimPol is one of a number of polymerases that can be recruited to replicate past sites of DNA damage. PrimPol localises to chromatin following UV irradiation. PrimPol is able to bypass the highly distortive Pyrimidine dimers produced as a result of UV irradiation of DNA in vitro. PrimPol requires its primase activity to bypass UV lesions in vivo without stalling. Taken together these data suggest that PrimPol has two separate modes of action to bypass lesions, one in direct read-through of lesions in a classical translesion DNA synthesis manner and one in priming downstream of the lesion and the gap filled in postreplicatively.

In addition to UV lesions, PrimPol is capable of bypassing the 8-Oxoguanine bases that are produced in response to oxidative stress, this is of particular importance in the oxidative environment of the mitochondria. The replicative DNA polymerase identified in the mitochondria, pol γ, deals with these lesions poorly. Furthermore, PrimPol is capable of bypassing an AP site in approximately 80% of cases.

Structure

PrimPol is formed of two protein domains, a catalytic primase-polymerase domain and a zinc finger domain. The primase and polymerase catalytic functions of PrimPol localise to the primase-polymerase domain but primase activity of PrimPol requires the zinc finger domain.

Subcellular localization

PrimPol has been found to be mainly located in the cytosol (47%), with large fractions also found in the mitochondria (34%), and nuclear compartments (19%). The mitochondrial fraction of PrimPol is found to be in the matrix of the mitochondria, as opposed to the either the membrane or intermembrane space.

PrimPol mutations

A mutation in the PRIMPOL gene has been correlated with myopia. This tyrosine to aspartate (Y89D) mutation has been shown to produce a poorly processive variant of the PrimPol protein, and this Y89D variant impedes replication forks in vivo.

References

  1. ^ GRCh38: Ensembl release 89: ENSG00000164306Ensembl, May 2017
  2. ^ GRCm38: Ensembl release 89: ENSMUSG00000038225Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: Entrez Gene: PRIMPOL primase and polymerase (DNA-directed)".
  6. ^ Bianchi J, Rudd SJ, Jozwiakowski SK, Bailey LJ, Soura V, Taylor E, Stevanovic I, Green AJ, Stracker TH, Lindsay HD, Doherty AJ (Nov 2014). "PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication". Molecular Cell. 52 (4): 566–73. doi:10.1016/j.molcel.2013.10.035. PMC 4228047. PMID 24267451.
  7. ^ García-Gómez S, Reyes A, Martínez-Jiménez MI, Chocrón ES, Mourón S, Terrados G, Powell C, Salido E, Méndez J, Holt IJ, Blanco L (Nov 2014). "PrimPol, an archaic primase/polymerase operating in human cells". Molecular Cell. 52 (4): 541–53. doi:10.1016/j.molcel.2013.09.025. PMC 3899013. PMID 24207056.
  8. Iyer LM, Koonin EV, Leipe DD, Aravind L (Jul 2005). "Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members". Nucleic Acids Research. 33 (12): 3875–96. doi:10.1093/nar/gki702. PMC 1176014. PMID 16027112.
  9. ^ Keen BA, Jozwiakowski SK, Bailey LJ, Bianchi J, Doherty AJ (Mar 2014). "Molecular dissection of the domain architecture and catalytic activities of human PrimPol". Nucleic Acids Research. 42 (9): 5830–45. doi:10.1093/nar/gku214. PMC 4027207. PMID 24682820.
  10. ^ Mourón S, Rodriguez-Acebes S, Martínez-Jiménez MI, García-Gómez S, Chocrón S, Blanco L, Méndez J (Nov 2013). "Repriming of DNA synthesis at stalled replication forks by human PrimPol". Nature Structural & Molecular Biology. 20 (12): 1383–9. doi:10.1038/nsmb.2719. hdl:10261/98409. PMID 24240614. S2CID 28904104.
  11. Zhao F, Wu J, Xue A, Su Y, Wang X, Lu X, Zhou Z, Qu J, Zhou X (Apr 2013). "Exome sequencing reveals CCDC111 mutation associated with high myopia". Human Genetics. 132 (8): 913–21. doi:10.1007/s00439-013-1303-6. PMID 23579484. S2CID 16845466.
  12. ^ Keen BA, Bailey LJ, Jozwiakowski SK, Doherty AJ (Sep 2014). "Human PrimPol mutation associated with high myopia has a DNA replication defect". Nucleic Acids Research. 42 (19): 12102–11. doi:10.1093/nar/gku879. PMC 4231748. PMID 25262353.
Categories: