In the mathematics of chaotic dynamical systems, in the Pyragas method of stabilizing a periodic orbit, an appropriate continuous controlling signal is injected into the system, whose intensity is nearly zero as the system evolves close to the desired periodic orbit but increases when it drifts away from the desired orbit. Both the Pyragas and OGY (Ott, Grebogi and Yorke) methods are part of a general class of methods called "closed loop" or "feedback" methods which can be applied based on knowledge of the system obtained through solely observing the behavior of the system as a whole over a suitable period of time. The method was proposed by Lithuanian physicist Kęstutis Pyragas [lt].
References
- S. Boccaletti et al.(2000) The Control of Chaos: Theory and Applications, Physics Reports 329, 103-197 Archived 2016-03-04 at the Wayback Machine.
- K. Pyragas (1992) Continuous control of chaos via self-controlling feedback, Physics Letters A, 170, 6, 421-428 Archived 2023-06-25 at the Wayback Machine
External links
This chaos theory-related article is a stub. You can help Misplaced Pages by expanding it. |