Misplaced Pages

Quantum optical coherence tomography

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
See also: Optical coherence tomography
This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (April 2021)

Quantum optical coherence tomography (Q-OCT) is an imaging technique that uses nonclassical (quantum) light sources to generate high-resolution images based on the Hong-Ou-Mandel effect (HOM). Q-OCT is similar to conventional OCT but uses a fourth-order interferometer that incorporates two photodetectors rather than a second-order interferometer with a single photodetector. The primary advantage of Q-OCT over OCT is insensitivity to even-order dispersion in multi-layered and scattering media.

Several quantum sources of light have been developed so far. An example of such nonclassical sources is spontaneous parametric down-conversion that generates entangled photon pairs (twin-photon). The entangled photons are emitted in pairs and have stronger-than-classical temporal and spatial correlations. The entangled photons are anti-correlated in frequencies and directions. However, the nonclassical light sources are expensive and limited, several quantum-mimetic light sources are developed by classical light and nonlinear optics, which mimic dispersion cancellation and unique additional benefits.

Theory

The principle of Q-OCT is fourth-order interferometry. The optical setup is based on a Hong ou Mandel (HOM) interferometer with a nonclassical light source. Twin photons travel into and recombined from reference and sample arm and the coincidence rate is measured with time delay.

Hong-Ou-Mandel interferometer
Hong-Ou-Mandel interferometer

The nonlinear crystal is pumped by a laser and generates photon pairs with anti-correlation in frequency. One photon travels through the sample and the other through a delay time before the interferometer. The photon-coincidence rate at the output ports of the beam splitter is measure as a function of length difference ( c τ q {\displaystyle c\tau _{q}} ) by a pair of single-photon-counting detectors and a coincidence counter.

Due to the quantum destructive interference, both photons emerge from the same port when the optical path lengths are equal. The coincidence rate has a sharp dip when the optical path length difference is zero. Such dips are used to monitor the reflectance of the sample as a function of depth.

The twin-photon source is characterized by the frequency-entangled state:

| ψ = d Ω ζ ( Ω ) | ω 0 + Ω 1 | ω 0 Ω 2 , {\displaystyle \left|\psi \right\rangle =\int \,d\Omega \zeta (\Omega )\left|\omega _{0}+\Omega \right\rangle _{1}\left|\omega _{0}-\Omega \right\rangle _{2},}

where Ω {\displaystyle \Omega } is the angular frequency deviation about the central angular frequency ω 0 {\displaystyle \omega _{0}} of the twin-photon wave packet, ζ ( Ω ) {\displaystyle \zeta (\Omega )} is the spectral probability amplitude.

A reflecting sample is described by a transfer function:

H ( ω ) = 0 d z r ( z , ω ) e i 2 ϕ ( z , ω ) , {\displaystyle H(\omega )=\int \limits _{0}^{\infty }\,dzr(z,\omega )e^{i2\phi (z,\omega )},}

where H ( ω ) = r ( z , ω ) {\displaystyle H(\omega )=r(z,\omega )} is the complex reflection coefficient from depth z {\displaystyle z} ,

The coincidence rate C ( τ q ) {\displaystyle C(\tau _{q})} is then given by

A-scan plot of the quantum optical coherence tomography
A-scan plot of the quantum optical coherence tomography

C ( τ q ) Λ 0 R e Λ ( 2 τ q ) , {\displaystyle C(\tau _{q})\propto \Lambda _{0}-Re{\Lambda (2\tau _{q})},}

where

Λ 0 = d Ω | H ( ω 0 + Ω ) | 2 S ( Ω ) {\displaystyle \Lambda _{0}=\int \,d\Omega |H(\omega _{0}+\Omega )|^{2}S(\Omega )} ,

and

Λ ( τ q ) = d Ω H ( ω 0 + Ω ) H ( ω 0 Ω ) S ( Ω ) e i Ω τ q , {\displaystyle \Lambda (\tau _{q})=\int \,d\Omega H(\omega _{0}+\Omega )H^{\ast }(\omega _{0}-\Omega )S(\Omega )e^{-i\Omega \tau _{q}},}

represent the constant (self-interference) and varying contributions (cross-interference).

Dips in the coincidence rate plot arise from reflections from each of the two surfaces. When two photons have equal overall path lengths, the destructive interference of the two photon-pair probability amplitude occurs.

Advantages

Compared with conventional OCT, Q-OCT has several advantages:

  • greater signal-to-background ratio;
  • intrinsic resolution enhancement by a factor of two for the same source bandwidth;
  • interferogram components that are insensitive to even-order dispersion of the medium;
  • interferogram components that are sensitive to the dispersion of the medium

Applications

Similar to FD-OCT, Q-OCT can provide 3D imaging of biological samples with a better resolution due to the photon entanglement. Q-OCT permits a direct determination of the group-velocity dispersion (GVD) coefficients of the media. The development of quantum-mimetic light sources offers unique additional benefits to quantum imaging, such as enhanced signal-to-noise ratio, better resolution, and acquisition rate. Although Q-OCT is not expected to replace OCT, it does offer some advantages as a biological imaging paradigm.

References

  1. Hong, C. K.; Ou, Z. Y.; Mandel, L. (1987-11-02). "Measurement of subpicosecond time intervals between two photons by interference". Physical Review Letters. 59 (18): 2044–2046. Bibcode:1987PhRvL..59.2044H. doi:10.1103/PhysRevLett.59.2044. PMID 10035403.
  2. Gilgen, H. H.; Novak, R. P.; Salathe, R. P.; Hodel, W.; Beaud, P. (August 1989). "Submillimeter optical reflectometry". Journal of Lightwave Technology. 7 (8): 1225–1233. Bibcode:1989JLwT....7.1225G. doi:10.1109/50.32387. ISSN 1558-2213.
  3. Franson, J. D. (1992-03-01). "Nonlocal cancellation of dispersion". Physical Review A. 45 (5): 3126–3132. Bibcode:1992PhRvA..45.3126F. doi:10.1103/PhysRevA.45.3126. PMID 9907348. S2CID 36542368.
  4. Steinberg, A. M.; Kwiat, P. G.; Chiao, R. Y. (1993-08-02). "Measurement of the single-photon tunneling time". Physical Review Letters. 71 (5): 708–711. Bibcode:1993PhRvL..71..708S. doi:10.1103/PhysRevLett.71.708. PMID 10055346. S2CID 31009201.
  5. Larchuk, Todd S.; Teich, Malvin C.; Saleh, Bahaa E. A. (1995-11-01). "Nonlocal cancellation of dispersive broadening in Mach-Zehnder interferometers". Physical Review A. 52 (5): 4145–4154. Bibcode:1995PhRvA..52.4145L. doi:10.1103/PhysRevA.52.4145. PMID 9912731.
  6. Klyshko, D. N. (1988-01-01). Photons Nonlinear Optics. CRC Press. ISBN 978-2-88124-669-2.
  7. Lavoie, J.; Kaltenbaek, R.; Resch, K. J. (2009-03-02). "Quantum-optical coherence tomography with classical light". Optics Express. 17 (5): 3818–3826. arXiv:0909.0791. Bibcode:2009OExpr..17.3818L. doi:10.1364/OE.17.003818. PMID 19259223. S2CID 8115209.
  8. Teich, Malvin Carl; Saleh, Bahaa E. A.; Wong, Franco N. C.; Shapiro, Jeffrey H. (2012-08-01). "Variations on the theme of quantum optical coherence tomography: a review". Quantum Information Processing. 11 (4): 903–923. doi:10.1007/s11128-011-0266-6. S2CID 254985458.
  9. Nasr, Magued B.; Saleh, Bahaa E. A.; Sergienko, Alexander V.; Teich, Malvin C. (2003-08-22). "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography". Physical Review Letters. 91 (8): 083601. arXiv:quant-ph/0304160. Bibcode:2003PhRvL..91h3601N. doi:10.1103/PhysRevLett.91.083601. PMID 14525237. S2CID 7206765. Retrieved 2021-04-14.
  10. Abouraddy, Ayman F.; Nasr, Magued B.; Saleh, Bahaa E. A.; Sergienko, Alexander V.; Teich, Malvin C. (2002-05-08). "Quantum-optical coherence tomography with dispersion cancellation". Physical Review A. 65 (5): 053817. arXiv:quant-ph/0111140. Bibcode:2002PhRvA..65e3817A. doi:10.1103/PhysRevA.65.053817. S2CID 15047941.
  11. Abouraddy, Ayman F.; Nasr, Magued B.; Saleh, Bahaa E. A.; Sergienko, Alexander V.; Teich, Malvin C. (2002-05-08). "Quantum-optical coherence tomography with dispersion cancellation". Physical Review A. 65 (5): 053817. arXiv:quant-ph/0111140. Bibcode:2002PhRvA..65e3817A. doi:10.1103/PhysRevA.65.053817. S2CID 15047941.
  12. "Quantum optical coherence tomography data collection apparatus and method for processing therefor". 2002-11-26.
  13. Nasr, Magued B.; Saleh, Bahaa E. A.; Sergienko, Alexander V.; Teich, Malvin C. (2003-08-22). "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography". Physical Review Letters. 91 (8): 083601. arXiv:quant-ph/0304160. Bibcode:2003PhRvL..91h3601N. doi:10.1103/PhysRevLett.91.083601. PMID 14525237. S2CID 7206765.
  14. Nasr, Magued B.; Saleh, Bahaa E. A.; Sergienko, Alexander V.; Teich, Malvin C. (2004-04-05). "Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography". Optics Express. 12 (7): 1353–1362. Bibcode:2004OExpr..12.1353N. doi:10.1364/OPEX.12.001353. PMID 19474956.
  15. Nasr, Magued B.; Goode, Darryl P.; Nguyen, Nam; Rong, Guoxin; Yang, Linglu; Reinhard, Björn M.; Saleh, Bahaa E.A.; Teich, Malvin C. (2009-03-15). "Quantum optical coherence tomography of a biological sample". Optics Communications. 282 (6): 1154–1159. arXiv:0809.4721. Bibcode:2009OptCo.282.1154N. doi:10.1016/j.optcom.2008.11.061. S2CID 931548.
  16. Nasr, Magued B.; Saleh, Bahaa E. A.; Sergienko, Alexander V.; Teich, Malvin C. (2004-04-05). "Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography". Optics Express. 12 (7): 1353–1362. Bibcode:2004OExpr..12.1353N. doi:10.1364/OPEX.12.001353. PMID 19474956.
Category: