Misplaced Pages

Quarter 8-cubic honeycomb

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
quarter 8-cubic honeycomb
(No image)
Type Uniform 8-honeycomb
Family Quarter hypercubic honeycomb
Schläfli symbol q{4,3,3,3,3,3,3,4}
Coxeter diagram =
7-face type h{4,3},
h6{4,3},
{3,3}×{3} duoprism
{3}×{3} duoprism
Vertex figure
Coxeter group D ~ 8 {\displaystyle {\tilde {D}}_{8}} ×2 = ]
Dual
Properties vertex-transitive

In seven-dimensional Euclidean geometry, the quarter 8-cubic honeycomb is a uniform space-filling tessellation (or honeycomb). It has half the vertices of the 8-demicubic honeycomb, and a quarter of the vertices of a 8-cube honeycomb. Its facets are 8-demicubes h{4,3}, pentic 8-cubes h6{4,3}, {3,3}×{3} and {3}×{3} duoprisms.

See also

Regular and uniform honeycombs in 8-space:

Notes

  1. Coxeter, Regular and Semi-Regular Polytopes III, (1988), p318

References

Fundamental convex regular and uniform honeycombs in dimensions 2–9
Space Family A ~ n 1 {\displaystyle {\tilde {A}}_{n-1}} C ~ n 1 {\displaystyle {\tilde {C}}_{n-1}} B ~ n 1 {\displaystyle {\tilde {B}}_{n-1}} D ~ n 1 {\displaystyle {\tilde {D}}_{n-1}} G ~ 2 {\displaystyle {\tilde {G}}_{2}} / F ~ 4 {\displaystyle {\tilde {F}}_{4}} / E ~ n 1 {\displaystyle {\tilde {E}}_{n-1}}
E Uniform tiling 0 δ3 3 3 Hexagonal
E Uniform convex honeycomb 0 δ4 4 4
E Uniform 4-honeycomb 0 δ5 5 5 24-cell honeycomb
E Uniform 5-honeycomb 0 δ6 6 6
E Uniform 6-honeycomb 0 δ7 7 7 222
E Uniform 7-honeycomb 0 δ8 8 8 133331
E Uniform 8-honeycomb 0 δ9 9 9 152251521
E Uniform 9-honeycomb 0 δ10 10 10
E Uniform 10-honeycomb 0 δ11 11 11
E Uniform (n-1)-honeycomb 0 δn n n 1k22k1k21
Categories: