Misplaced Pages

RAPSN

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Protein-coding gene in the species Homo sapiens

RAPSN
Identifiers
AliasesRAPSN, RAPSYN, RNF205, CMS11, CMS4C, FADS, receptor associated protein of the synapse, FADS2
External IDsOMIM: 601592; MGI: 99422; HomoloGene: 3708; GeneCards: RAPSN; OMA:RAPSN - orthologs
Gene location (Human)
Chromosome 11 (human)
Chr.Chromosome 11 (human)
Chromosome 11 (human)Genomic location for RAPSNGenomic location for RAPSN
Band11p11.2Start47,437,764 bp
End47,449,143 bp
Gene location (Mouse)
Chromosome 2 (mouse)
Chr.Chromosome 2 (mouse)
Chromosome 2 (mouse)Genomic location for RAPSNGenomic location for RAPSN
Band2 E1|2 50.44 cMStart90,865,965 bp
End90,876,074 bp
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • muscle of thigh

  • testicle

  • gastrocnemius muscle

  • Skeletal muscle tissue of rectus abdominis

  • muscle of arm

  • apex of heart

  • biceps brachii

  • deltoid muscle

  • quadriceps femoris muscle

  • glutes
Top expressed in
  • muscle tissue

  • quadriceps femoris muscle

  • skeletal muscle tissue

  • muscle of thigh

  • thoracic diaphragm

  • heart

  • secondary oocyte

  • primary oocyte

  • esophagus

  • lens
More reference expression data
BioGPS
More reference expression data
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

5913

19400

Ensembl

ENSG00000165917

ENSMUSG00000002104

UniProt

Q13702

P12672

RefSeq (mRNA)

NM_005055
NM_032645

NM_009023

RefSeq (protein)

NP_005046
NP_116034

NP_033049

Location (UCSC)Chr 11: 47.44 – 47.45 MbChr 2: 90.87 – 90.88 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

43 kDa receptor-associated protein of the synapse (rapsyn) is a protein that in humans is encoded by the RAPSN gene.

Function

This protein belongs to a family of proteins that are receptor associated proteins of the synapse. It contains a conserved cAMP-dependent protein kinase phosphorylation site. It is believed to play some role in anchoring or stabilizing the nicotinic acetylcholine receptor at synaptic sites. It may link the receptor to the underlying postsynaptic cytoskeleton, possibly by direct association with actin or spectrin. Two splice variants have been identified for this gene.

Role in health and disease

In the neuromuscular junction there is a vital pathway that maintains synaptic structure and results in the aggregation and localization of the acetylcholine receptor (AChR) on the postsynaptic folds. This pathway consists of agrin, muscle-specific tyrosine kinase (MuSK protein), AChRs and the AChR-clustering protein rapsyn, encoded by RAPSN. Genetic mutations of the proteins in the neuromuscular junction are associated with Congenital myasthenic syndrome (CMS). Postsynaptic defects are the most frequent cause of CMS and often result in abnormalities in the acetylcholine receptor. The vast majority of mutations causing CMS are found in the AChR subunits and rapsyn genes.

The rapsyn protein interacts directly with the AChRs and plays a vital role in agrin-induced clustering of the AChR. Without rapsyn, functional synapses cannot be created as the folds do not form properly. Patients with CMS-related mutations of the rapsyn protein typically are either homozygous for N88K or heterozygous for N88K and a second mutation. The major effect of the mutation N88K in rapsyn is to reduce the stability of AChR clusters. The second mutation can be a determining factor in the severity of the disease.

Studies have shown that most patients with CMS that have rapsyn mutations carry the common mutation N88K on at least one allele. However, research has revealed that there is a small population of patients who do not carry the N88K mutation on either of their alleles, but instead have different mutations of the RAPSN gene on both of their alleles. Two novel missense mutations that have been found are R164C and L283P and the result is a decrease in co-clustering of AChR with raspyn. A third mutation is the intronic base alteration IVS1-15C>A and it causes abnormal splicing of RAPSN RNA. These results show that diagnostic screening for CMS mutations of the RAPSN gene cannot be based exclusively on the detection of N88K mutations Interestingly, patients who bear the burden of CMS due to these rapsyn mutations often demonstrate a remarkable response to anticholinesterase drugs like pyridostigmine. Moreover, the supplemental inclusion of 3,4 DAP, ephedrine, or albuterol often yields significant clinical improvement.

Interactions

RAPSN has been shown to interact with KHDRBS1.

References

  1. ^ GRCh38: Ensembl release 89: ENSG00000165917Ensembl, May 2017
  2. ^ GRCm38: Ensembl release 89: ENSMUSG00000002104Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Buckel A, Beeson D, James M, Vincent A (August 1996). "Cloning of cDNA encoding human rapsyn and mapping of the RAPSN gene locus to chromosome 11p11.2-p11.1". Genomics. 35 (3): 613–616. doi:10.1006/geno.1996.0409. PMID 8812503.
  6. ^ "Entrez Gene: RAPSN receptor-associated protein of the synapse".
  7. ^ Cossins J, Burke G, Maxwell S, Spearman H, Man S, Kuks J, et al. (October 2006). "Diverse molecular mechanisms involved in AChR deficiency due to rapsyn mutations". Brain. 129 (Pt 10): 2773–2783. doi:10.1093/brain/awl219. PMID 16945936.
  8. Müller JS, Baumeister SK, Rasic VM, Krause S, Todorovic S, Kugler K, et al. (October 2006). "Impaired receptor clustering in congenital myasthenic syndrome with novel RAPSN mutations". Neurology. 67 (7): 1159–1164. doi:10.1212/01.wnl.0000233837.79459.40. PMID 16931511. S2CID 41593780.
  9. Liao X, Wang Y, Lai X, Wang S (February 2023). "The role of Rapsyn in neuromuscular junction and congenital myasthenic syndrome". Biomolecules and Biomedicine. 23 (5): 772–784. doi:10.17305/bb.2022.8641. PMC 10494853. PMID 36815443. S2CID 257100080.
  10. Fung ET, Lanahan A, Worley P, Huganir RL (October 1998). "Identification of a Torpedo homolog of Sam68 that interacts with the synapse organizing protein rapsyn". FEBS Letters. 437 (1–2): 29–33. Bibcode:1998FEBSL.437...29F. doi:10.1016/S0014-5793(98)01151-X. PMID 9804166. S2CID 7842971.

Further reading

Category: