In mathematics , Racah polynomials are orthogonal polynomials named after Giulio Racah , as their orthogonality relations are equivalent to his orthogonality relations for Racah coefficients .
The Racah polynomials were first defined by Wilson (1978) and are given by
p
n
(
x
(
x
+
γ
+
δ
+
1
)
)
=
4
F
3
[
−
n
n
+
α
+
β
+
1
−
x
x
+
γ
+
δ
+
1
α
+
1
γ
+
1
β
+
δ
+
1
;
1
]
.
{\displaystyle p_{n}(x(x+\gamma +\delta +1))={}_{4}F_{3}\left.}
Orthogonality
∑
y
=
0
N
R
n
(
x
;
α
,
β
,
γ
,
δ
)
R
m
(
x
;
α
,
β
,
γ
,
δ
)
γ
+
δ
+
1
+
2
y
γ
+
δ
+
1
+
y
ω
y
=
h
n
δ
n
,
m
,
{\displaystyle \sum _{y=0}^{N}\operatorname {R} _{n}(x;\alpha ,\beta ,\gamma ,\delta )\operatorname {R} _{m}(x;\alpha ,\beta ,\gamma ,\delta ){\frac {\gamma +\delta +1+2y}{\gamma +\delta +1+y}}\omega _{y}=h_{n}\operatorname {\delta } _{n,m},}
when
α
+
1
=
−
N
{\displaystyle \alpha +1=-N}
,
where
R
{\displaystyle \operatorname {R} }
is the Racah polynomial,
x
=
y
(
y
+
γ
+
δ
+
1
)
,
{\displaystyle x=y(y+\gamma +\delta +1),}
δ
n
,
m
{\displaystyle \operatorname {\delta } _{n,m}}
is the Kronecker delta function and the weight functions are
ω
y
=
(
α
+
1
)
y
(
β
+
δ
+
1
)
y
(
γ
+
1
)
y
(
γ
+
δ
+
2
)
y
(
−
α
+
γ
+
δ
+
1
)
y
(
−
β
+
γ
+
1
)
y
(
δ
+
1
)
y
y
!
,
{\displaystyle \omega _{y}={\frac {(\alpha +1)_{y}(\beta +\delta +1)_{y}(\gamma +1)_{y}(\gamma +\delta +2)_{y}}{(-\alpha +\gamma +\delta +1)_{y}(-\beta +\gamma +1)_{y}(\delta +1)_{y}y!}},}
and
h
n
=
(
−
β
)
N
(
γ
+
δ
+
1
)
N
(
−
β
+
γ
+
1
)
N
(
δ
+
1
)
N
(
n
+
α
+
β
+
1
)
n
n
!
(
α
+
β
+
2
)
2
n
(
α
+
δ
−
γ
+
1
)
n
(
α
−
δ
+
1
)
n
(
β
+
1
)
n
(
α
+
1
)
n
(
β
+
δ
+
1
)
n
(
γ
+
1
)
n
,
{\displaystyle h_{n}={\frac {(-\beta )_{N}(\gamma +\delta +1)_{N}}{(-\beta +\gamma +1)_{N}(\delta +1)_{N}}}{\frac {(n+\alpha +\beta +1)_{n}n!}{(\alpha +\beta +2)_{2n}}}{\frac {(\alpha +\delta -\gamma +1)_{n}(\alpha -\delta +1)_{n}(\beta +1)_{n}}{(\alpha +1)_{n}(\beta +\delta +1)_{n}(\gamma +1)_{n}}},}
(
⋅
)
n
{\displaystyle (\cdot )_{n}}
is the Pochhammer symbol .
Rodrigues-type formula
ω
(
x
;
α
,
β
,
γ
,
δ
)
R
n
(
λ
(
x
)
;
α
,
β
,
γ
,
δ
)
=
(
γ
+
δ
+
1
)
n
∇
n
∇
λ
(
x
)
n
ω
(
x
;
α
+
n
,
β
+
n
,
γ
+
n
,
δ
)
,
{\displaystyle \omega (x;\alpha ,\beta ,\gamma ,\delta )\operatorname {R} _{n}(\lambda (x);\alpha ,\beta ,\gamma ,\delta )=(\gamma +\delta +1)_{n}{\frac {\nabla ^{n}}{\nabla \lambda (x)^{n}}}\omega (x;\alpha +n,\beta +n,\gamma +n,\delta ),}
where
∇
{\displaystyle \nabla }
is the backward difference operator ,
λ
(
x
)
=
x
(
x
+
γ
+
δ
+
1
)
.
{\displaystyle \lambda (x)=x(x+\gamma +\delta +1).}
Generating functions
There are three generating functions for
x
∈
{
0
,
1
,
2
,
.
.
.
,
N
}
{\displaystyle x\in \{0,1,2,...,N\}}
when
β
+
δ
+
1
=
−
N
{\displaystyle \beta +\delta +1=-N\quad }
or
γ
+
1
=
−
N
,
{\displaystyle \quad \gamma +1=-N,}
2
F
1
(
−
x
,
−
x
+
α
−
γ
−
δ
;
α
+
1
;
t
)
2
F
1
(
x
+
β
+
δ
+
1
,
x
+
γ
+
1
;
β
+
1
;
t
)
{\displaystyle {}_{2}F_{1}(-x,-x+\alpha -\gamma -\delta ;\alpha +1;t){}_{2}F_{1}(x+\beta +\delta +1,x+\gamma +1;\beta +1;t)}
=
∑
n
=
0
N
(
β
+
δ
+
1
)
n
(
γ
+
1
)
n
(
β
+
1
)
n
n
!
R
n
(
λ
(
x
)
;
α
,
β
,
γ
,
δ
)
t
n
,
{\displaystyle \quad =\sum _{n=0}^{N}{\frac {(\beta +\delta +1)_{n}(\gamma +1)_{n}}{(\beta +1)_{n}n!}}\operatorname {R} _{n}(\lambda (x);\alpha ,\beta ,\gamma ,\delta )t^{n},}
when
α
+
1
=
−
N
{\displaystyle \alpha +1=-N\quad }
or
γ
+
1
=
−
N
,
{\displaystyle \quad \gamma +1=-N,}
2
F
1
(
−
x
,
−
x
+
β
−
γ
;
β
+
δ
+
1
;
t
)
2
F
1
(
x
+
α
+
1
,
x
+
γ
+
1
;
α
−
δ
+
1
;
t
)
{\displaystyle {}_{2}F_{1}(-x,-x+\beta -\gamma ;\beta +\delta +1;t){}_{2}F_{1}(x+\alpha +1,x+\gamma +1;\alpha -\delta +1;t)}
=
∑
n
=
0
N
(
α
+
1
)
n
(
γ
+
1
)
n
(
α
−
δ
+
1
)
n
n
!
R
n
(
λ
(
x
)
;
α
,
β
,
γ
,
δ
)
t
n
,
{\displaystyle \quad =\sum _{n=0}^{N}{\frac {(\alpha +1)_{n}(\gamma +1)_{n}}{(\alpha -\delta +1)_{n}n!}}\operatorname {R} _{n}(\lambda (x);\alpha ,\beta ,\gamma ,\delta )t^{n},}
when
α
+
1
=
−
N
{\displaystyle \alpha +1=-N\quad }
or
β
+
δ
+
1
=
−
N
,
{\displaystyle \quad \beta +\delta +1=-N,}
2
F
1
(
−
x
,
−
x
−
δ
;
γ
+
1
;
t
)
2
F
1
(
x
+
α
+
1
;
x
+
β
+
γ
+
1
;
α
+
β
−
γ
+
1
;
t
)
{\displaystyle {}_{2}F_{1}(-x,-x-\delta ;\gamma +1;t){}_{2}F_{1}(x+\alpha +1;x+\beta +\gamma +1;\alpha +\beta -\gamma +1;t)}
=
∑
n
=
0
N
(
α
+
1
)
n
(
β
+
δ
+
1
)
n
(
α
+
β
−
γ
+
1
)
n
n
!
R
n
(
λ
(
x
)
;
α
,
β
,
γ
,
δ
)
t
n
.
{\displaystyle \quad =\sum _{n=0}^{N}{\frac {(\alpha +1)_{n}(\beta +\delta +1)_{n}}{(\alpha +\beta -\gamma +1)_{n}n!}}\operatorname {R} _{n}(\lambda (x);\alpha ,\beta ,\gamma ,\delta )t^{n}.}
Connection formula for Wilson polynomials
When
α
=
a
+
b
−
1
,
β
=
c
+
d
−
1
,
γ
=
a
+
d
−
1
,
δ
=
a
−
d
,
x
→
−
a
+
i
x
,
{\displaystyle \alpha =a+b-1,\beta =c+d-1,\gamma =a+d-1,\delta =a-d,x\rightarrow -a+ix,}
R
n
(
λ
(
−
a
+
i
x
)
;
a
+
b
−
1
,
c
+
d
−
1
,
a
+
d
−
1
,
a
−
d
)
=
W
n
(
x
2
;
a
,
b
,
c
,
d
)
(
a
+
b
)
n
(
a
+
c
)
n
(
a
+
d
)
n
,
{\displaystyle \operatorname {R} _{n}(\lambda (-a+ix);a+b-1,c+d-1,a+d-1,a-d)={\frac {\operatorname {W} _{n}(x^{2};a,b,c,d)}{(a+b)_{n}(a+c)_{n}(a+d)_{n}}},}
where
W
{\displaystyle \operatorname {W} }
are Wilson polynomials.
q-analog
Askey & Wilson (1979) introduced the q -Racah polynomials defined in terms of basic hypergeometric functions by
p
n
(
q
−
x
+
q
x
+
1
c
d
;
a
,
b
,
c
,
d
;
q
)
=
4
ϕ
3
[
q
−
n
a
b
q
n
+
1
q
−
x
q
x
+
1
c
d
a
q
b
d
q
c
q
;
q
;
q
]
.
{\displaystyle p_{n}(q^{-x}+q^{x+1}cd;a,b,c,d;q)={}_{4}\phi _{3}\left.}
They are sometimes given with changes of variables as
W
n
(
x
;
a
,
b
,
c
,
N
;
q
)
=
4
ϕ
3
[
q
−
n
a
b
q
n
+
1
q
−
x
c
q
x
−
n
a
q
b
c
q
q
−
N
;
q
;
q
]
.
{\displaystyle W_{n}(x;a,b,c,N;q)={}_{4}\phi _{3}\left.}
References
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Wilson Class: Definitions" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Koekoek, Roelof; Swarttouw, René F. (1998), The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue
Askey, Richard; Wilson, James (1979), "A set of orthogonal polynomials that generalize the Racah coefficients or 6-j symbols" (PDF), SIAM Journal on Mathematical Analysis , 10 (5): 1008–1016, doi :10.1137/0510092 , ISSN 0036-1410 , MR 0541097 , archived from the original on September 25, 2017
Wilson, J. (1978), Hypergeometric series recurrence relations and some new orthogonal functions , Ph.D. thesis, Univ. Wisconsin, Madison
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑