Misplaced Pages

Rasiowa–Sikorski lemma

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Mathematical lemma

In axiomatic set theory, the Rasiowa–Sikorski lemma named after Helena Rasiowa and Roman Sikorski is one of the most fundamental facts used in the technique of forcing. In the area of forcing, a subset E of a poset (P, ≤) is called dense in P if for any p ∈ P there is e ∈ E with e ≤ p. If D is a set of dense subsets of P, then a filter F in P is called D-generic if

FE ≠ ∅ for all ED.

Now we can state the Rasiowa–Sikorski lemma:

Let (P, ≤) be a poset and p ∈ P. If D is a countable set of dense subsets of P then there exists a D-generic filter F in P such that p ∈ F.

Proof of the Rasiowa–Sikorski lemma

Let p ∈ P be given. Since D is countable, D = { Di | i ∈ N }, i.e., one can enumerate the dense subsets of P as D1, D2, ... and, by density, there exists p1 ≤ p with p1 ∈ D1. Iterating that, one gets ... ≤ p2 ≤ p1 ≤ p with piDi. Then G = { q ∈ P | ∃i. q ≥ pi } is a D-generic filter.

The Rasiowa–Sikorski lemma can be viewed as an equivalent to a weaker form of Martin's axiom. More specifically, it is equivalent to MA(ℵ0) and to the axiom of countable choice.

Examples

  • For (P, ≤) = (Func(XY), ⊇), the poset of partial functions from X to Y, reverse-ordered by inclusion, define Dx = { s ∈ P | x ∈ dom(s) }. Let D = { Dx | x ∈ X }. If X is countable, the Rasiowa–Sikorski lemma yields a D-generic filter F and thus a function FX → Y.
  • If we adhere to the notation used in dealing with D-generic filters, { H ∪ G0 | PijPt } forms an H-generic filter.
  • If D is uncountable, but of cardinality strictly smaller than 2 and the poset has the countable chain condition, we can instead use Martin's axiom. However, Martin's axiom is not provable in ZFC.

References

  1. Howard, Paul; Rubin, Jean E. (1998). Consequences of the axiom of choice. Providence, Rhode Island: American Mathematical Society. pp. 17–18. ISBN 978-0-8218-0977-8.

External links

Mathematical logic
General
Theorems (list)
 and paradoxes
Logics
Traditional
Propositional
Predicate
Set theory
Types of sets
Maps and cardinality
Set theories
Formal systems (list),
language and syntax
Example axiomatic
systems
 (list)
Proof theory
Model theory
Computability theory
Related
icon Mathematics portal
Set theory
Overview Venn diagram of set intersection
Axioms
Operations
  • Concepts
  • Methods
Set types
Theories
Set theorists
Categories: