This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (May 2024) (Learn how and when to remove this message) |
In mathematics, in the representation theory of algebraic groups, a linear representation of an algebraic group is said to be rational if, viewed as a map from the group to the general linear group, it is a rational map of algebraic varieties.
Finite direct sums and products of rational representations are rational.
A rational module is a module that can be expressed as a sum (not necessarily direct) of rational representations.
References
- Bialynicki-Birula, A.; Hochschild, G.; Mostow, G. D. (1963). "Extensions of Representations of Algebraic Linear Groups". American Journal of Mathematics. 85 (1). Johns Hopkins University Press: 131–44. doi:10.2307/2373191. ISSN 1080-6377. JSTOR 2373191.
- Springer Online Reference Works: Rational Representation
This algebra-related article is a stub. You can help Misplaced Pages by expanding it. |