Misplaced Pages

Rhombitetraapeirogonal tiling

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Rhombitetrapeirogonal tiling) Uniform tiling of the hyperbolic plane
Rhombitetraapeirogonal tiling
Rhombitetraapeirogonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 4.4.∞.4
Schläfli symbol rr{∞,4} or r { 4 } {\displaystyle r{\begin{Bmatrix}\infty \\4\end{Bmatrix}}}
Wythoff symbol 4 | ∞ 2
Coxeter diagram or
Symmetry group , (*∞42)
Dual Deltoidal tetraapeirogonal tiling
Properties Vertex-transitive

In geometry, the rhombitetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{∞,4}.

Constructions

There are two uniform constructions of this tiling, one from or (*∞42) symmetry, and secondly removing the mirror middle, , gives a rectangular fundamental domain , (*∞222).

Two uniform constructions of 4.4.4.∞
Name Rhombitetrahexagonal tiling
Image
Symmetry
(*∞42)
=
(*∞222)
Schläfli symbol rr{∞,4} t0,1,2,3{∞,∞,∞}
Coxeter diagram

Symmetry

The dual of this tiling, called a deltoidal tetraapeirogonal tiling represents the fundamental domains of (*∞222) orbifold symmetry. Its fundamental domain is a Lambert quadrilateral, with 3 right angles.

Related polyhedra and tiling

*n42 symmetry mutation of expanded tilings: n.4.4.4
Symmetry
, (*n42)
Spherical Euclidean Compact hyperbolic Paracomp.
*342
*442
*542
*642
*742
*842
*∞42
Expanded
figures
Config. 3.4.4.4 4.4.4.4 5.4.4.4 6.4.4.4 7.4.4.4 8.4.4.4 ∞.4.4.4
Rhombic
figures
config.

V3.4.4.4

V4.4.4.4

V5.4.4.4

V6.4.4.4

V7.4.4.4

V8.4.4.4

V∞.4.4.4
Paracompact uniform tilings in family
{∞,4} t{∞,4} r{∞,4} 2t{∞,4}=t{4,∞} 2r{∞,4}={4,∞} rr{∞,4} tr{∞,4}
Dual figures
V∞ V4.∞.∞ V(4.∞) V8.8.∞ V4 V4.∞ V4.8.∞
Alternations

(*44∞)

(∞*2)

(*2∞2∞)

(4*∞)

(*∞∞2)

(2*2∞)

(∞42)

=

=
h{∞,4} s{∞,4} hr{∞,4} s{4,∞} h{4,∞} hrr{∞,4} s{∞,4}
Alternation duals
V(∞.4) V3.(3.∞) V(4.∞.4) V3.∞.(3.4) V∞ V∞.4 V3.3.4.3.∞

See also

References

External links

Tessellation
Periodic


Aperiodic
Other
By vertex type
Spherical
Regular
Semi-
regular
Hyper-
bolic
Categories: