Rhombitetraapeirogonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 4.4.∞.4 |
Schläfli symbol | rr{∞,4} or |
Wythoff symbol | 4 | ∞ 2 |
Coxeter diagram | or |
Symmetry group | , (*∞42) |
Dual | Deltoidal tetraapeirogonal tiling |
Properties | Vertex-transitive |
In geometry, the rhombitetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of rr{∞,4}.
Constructions
There are two uniform constructions of this tiling, one from or (*∞42) symmetry, and secondly removing the mirror middle, , gives a rectangular fundamental domain , (*∞222).
Name | Rhombitetrahexagonal tiling | |
---|---|---|
Image | ||
Symmetry | (*∞42) |
= (*∞222) |
Schläfli symbol | rr{∞,4} | t0,1,2,3{∞,∞,∞} |
Coxeter diagram |
Symmetry
The dual of this tiling, called a deltoidal tetraapeirogonal tiling represents the fundamental domains of (*∞222) orbifold symmetry. Its fundamental domain is a Lambert quadrilateral, with 3 right angles.
Related polyhedra and tiling
*n42 symmetry mutation of expanded tilings: n.4.4.4 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry , (*n42) |
Spherical | Euclidean | Compact hyperbolic | Paracomp. | |||||||
*342 |
*442 |
*542 |
*642 |
*742 |
*842 |
*∞42 | |||||
Expanded figures |
|||||||||||
Config. | 3.4.4.4 | 4.4.4.4 | 5.4.4.4 | 6.4.4.4 | 7.4.4.4 | 8.4.4.4 | ∞.4.4.4 | ||||
Rhombic figures config. |
V3.4.4.4 |
V4.4.4.4 |
V5.4.4.4 |
V6.4.4.4 |
V7.4.4.4 |
V8.4.4.4 |
V∞.4.4.4 |
Paracompact uniform tilings in family | |||||||
---|---|---|---|---|---|---|---|
{∞,4} | t{∞,4} | r{∞,4} | 2t{∞,4}=t{4,∞} | 2r{∞,4}={4,∞} | rr{∞,4} | tr{∞,4} | |
Dual figures | |||||||
V∞ | V4.∞.∞ | V(4.∞) | V8.8.∞ | V4 | V4.∞ | V4.8.∞ | |
Alternations | |||||||
(*44∞) |
(∞*2) |
(*2∞2∞) |
(4*∞) |
(*∞∞2) |
(2*2∞) |
(∞42) | |
= |
= |
||||||
h{∞,4} | s{∞,4} | hr{∞,4} | s{4,∞} | h{4,∞} | hrr{∞,4} | s{∞,4} | |
Alternation duals | |||||||
V(∞.4) | V3.(3.∞) | V(4.∞.4) | V3.∞.(3.4) | V∞ | V∞.4 | V3.3.4.3.∞ |
See also
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
- Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
- Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
- Hyperbolic and Spherical Tiling Gallery
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch
Tessellation | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||
| |||||||||||||
| |||||||||||||
|