Misplaced Pages

Richard Adolf Zsigmondy

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Richard Zsigmondy) Austrian-born chemist (1865–1929) The native form of this personal name is Zsigmondy Richárd Adolf. This article uses Western name order when mentioning individuals.
Richard Adolf Zsigmondy
Born(1865-04-01)1 April 1865
Vienna, Austrian Empire
Died23 September 1929(1929-09-23) (aged 64)
Göttingen, Germany
NationalityAustrian
Alma materTechnical University of Vienna
University of Munich
SpouseLaura Luise Müller
Children2
Parents
  • Adolf Zsidmondy (father)
  • Irma von Szakmáry (mother)
RelativesFrigyes Schulek (cousin)
Dénes Zsigmondy
AwardsNobel Prize in Chemistry (1925)
Scientific career
FieldsChemistry
InstitutionsUniversity of Vienna
Technical University of Vienna
University of Munich
Graz University of Technology
University of Göttingen
Doctoral advisorWilhelm von Miller

Richard Adolf Zsigmondy (Hungarian: Zsigmondy Richárd Adolf; 1 April 1865 – 23 September 1929) was an Austrian-born chemist. He was known for his research in colloids, for which he was awarded the Nobel Prize in chemistry in 1925, as well as for co-inventing the slit-ultramicroscope, and different membrane filters. The crater Zsigmondy on the Moon is named in his honour.

Biography

Early years

Zsigmondy was born in Vienna, Austrian Empire, to a Hungarian gentry family. His mother Irma Szakmáry, a poet born in Martonvásár, and his father, Adolf Zsigmondy Sr., a scientist from Pressburg (Pozsony, today's Bratislava) who invented several surgical instruments for use in dentistry. Zsigmondy family members were Lutherans. They originated from Johannes (Hungarian: János) Sigmondi (1686–1746, Bártfa, Kingdom of Hungary) and included teachers, priests and Hungarian freedom-fighters. Richard was raised by his mother after his father's early death in 1880, and received a comprehensive education. He enjoyed hobbies such as climbing and mountaineering with his siblings. His elder brothers, Otto (a dentist) and Emil (a physician), were well-known mountain climbers; his younger brother, Karl Zsigmondy, became a notable mathematician in Vienna. In high school, Richard developed an interest in natural science, especially in chemistry and physics, and experimented in his home laboratory.

He began his academic career at the University of Vienna Medical Faculty, but soon moved to the Technical University of Vienna, and later to the University of Munich, to study chemistry under Wilhelm von Miller (1848–1899). In Munich, he conducted research on indene and received his PhD from the University of Erlangen in 1889.

Career

In 1885 Zsigmondy published his very first article as a joint publication with his Viennese professor Rudolf Benedikt on a method of determining glycerin. His 1887 article Neue Lüster und Farben auf Glas (about colours on glass) marked the beginning of a research area on which he would work for another 30 years. Zsigmondy left organic chemistry to join the physics group of August Kundt at the University of Berlin.

In July 1892 Zsigmondy held a colloquium at Graz University of Technology assessed among others by Albert von Ettingshausen and Friedrich Emich in order to qualify as assistant professor. There he also completed his habilitation in 1893. Because of his knowledge about glass and its colouring, in 1897 the Schott Glass factory offered him a job which he accepted. He invented the Jenaer Milchglas and conducted some research on the red Ruby glass. Lecturing activities in Graz were documented until 1899.

Zsigmondy left Schott Glass in 1900, but remained in Jena as private lecturer to conduct his research. Together with the optical instrument manufacturer Zeiss, he developed the slit ultramicroscope. His scientific career continued in 1908 at the University of Göttingen, where he stayed for the rest of his professional career as professor of inorganic chemistry. In 1925, Zsigmondy received the Nobel Prize for Chemistry for his work on colloids and the methods he used, such as the ultramicroscope upon which based his investigation on the Purple of Cassius.

Before Zsigmondy finished his PhD thesis in organic chemistry, he published research on colouring glass with silver salts and dissolved silver particles, which he recovered by dissolving the glass in hydrofluoric acid.

Vintage cranberry glass bowl

During his stay in Graz, Zsigmondy accomplished his most notable research work, on the chemistry of colloids. The exact mechanism which yields the red colour of the Cranberry or Ruby glass was a result of his studies of colloids.

Aqueous colloidal gold.

In later years he worked on gold hydrosols and used them to characterize protein solutions. While in Jena, he developed the slit ultramicroscope together with Henry Siedentopf. After moving to Göttingen, Zsigmondy improved his optical equipment for the observation of finest nanoparticles suspended in liquid solution. As a result, he introduced the immersion ultramicroscope in 1912.

Together with Wilhelm Bachmann, Zsigmondy developed a new membrane filter (1916). He later transferred his patents to a company established by him, other shareholders and Sartorius AG which was incorporated to Sartorius in the late 1970s.

Private life

Göttingen, grave Zsigmondy's

In 1903 Zsigmondy married Laura Luise Müller, with whom he had two daughters, Annemarie and Käthe.

Richard Zsigmondy died due to his arteriosclerosis only a few months after retiring from his university position in Göttingen in early March.

He was a cousin of the architect Frigyes Schulek, whose mother was Auguszta Zsigmondy. He is also related to the violinist Dénes Zsigmondy.

Ancestry

Zsigmondy
Richard Zsigmondy,

Vienna (A) 1862–Göttingen (D) 1929

scientist, Nobel Prize Winner in chemistry 1925
Father:
Adolf Zsigmondy
Pressburg/ Pozsony, (HUN) 1816–
Vienna (A) 1880
Grandfather:
Sámuel Zsigmondy
Pilis, (HUN) 1788–
1833 Pressburg/ Pozsony (HUN)
Great-grandfather:
G. Zsigmondy
Körmöcbánya (HUN) 1748-Pilis (HUN) 1799
Great-great-grandfather:
J. Zsigmondy
Bártfa (HUN) ca 1700
-Körmöcbánya(HUN) 1765
Great-great-grandmother:
Zsuzsanna Kossovits
Besztercebánya (HUN) ?
-Lónyabánya (HUN) 1790
Great-grandmother:
Judit Polereczky
Alberti (Now Albertirsa) (HUN) 1756–
1833 Pressburg/Pozsony (HUN)
Grandmother:
Friderika Fábry

1793 Pressburg/ Pozsony (HUN)–
1868 Pressburg/Pozsony (HUN)
grandmother's father:
István Fábry
Hrussó (HUN) 1751 – Pressburg/ Pozsony (HUN) 1817
grandmother's mother:
Terézia Bayer
Mother:
Irma von Szakmáry
Martonvásár (HUN) 1835
Vienna 1900
Mothers father:
N.N. von Szakmáry
(1818–
1888)
Mother's grandfather :
N.N.:
Mothers mother:
Mária Gegus von Kisgessény
 ? 1800
Pressburg/ Pozsony (HUN) 18 September 1883
N.N. :
Sámuel Gegus

Honours

Selected publications

See also

References

  1. ^ "Richard Zsigmondy - Biographical". nobelprize.org. Retrieved 2022-10-08.
  2. Miller, W. V.; Rohde, G. (1889). "Zur Synthese von Indenderivaten". Berichte der Deutschen Chemischen Gesellschaft. 22 (2): 1881–1886. doi:10.1002/cber.18890220227.
  3. ^ Herbert Freundlich (1930). "RICHARD ZSIGMONDY (1865-1929)" (PDF). Berichte der Deutschen Chemischen Gesellschaft. 63 (11): 171–175.
  4. ^ Monique Zimon. "Die Göttinger Nobelpreisträger" (PDF). gwdg.de (in German). Retrieved 2022-10-08.
  5. Wohinz, Josef W., ed. (1999). Die Technik in Graz: Aus Tradition für Innovation. Böhlau Verlag. pp. 159–160. ISBN 3-205-98910-4.
  6. Wohinz, Josef W., ed. (1999). Die Technik in Graz: Aus Tradition für Innovation. Böhlau Verlag. p. 161. ISBN 3-205-98910-4.
  7. Zsigmondy, R. (1898). "Ueber wässrige Lösungen metallischen Goldes". Justus Liebig's Annalen der Chemie. 301 (1): 29–54. doi:10.1002/jlac.18983010104.
  8. Mappes, T. (2012). "The Invention of Immersion Ultramicroscopy in 1912—The Birth of Nanotechnology?". Angewandte Chemie International Edition. 51 (45): 11208–11212. doi:10.1002/anie.201204688. PMID 23065955.
  9. U.S. patent 1421341A
  10. "Filtrationsgerät, Beschreibung in English". uni-goettingen.de. Retrieved 2022-10-08.
  11. "Richard Zsigmondy and the Origins of Sartorius Filtration Technology". sartorius.com. Retrieved 2022-10-08.
  12. ^ "Zsigmondy, Richard Adolf". austria-forum.org. Retrieved 2022-09-29.
  13. "Professor Richard Zsigmondy (in Neues Wiener Tagblatt), page 10". onb.ac.at (in German). Retrieved 2022-10-08.
  14. Czeizel, Endre (1992) Családfa Kossuth Könyvkiadó. Budapest, Kossuth. ISBN 963-09-3569-4
  15. "National Séchenyi Library - Funeral notices - Irma von Szakmáry geb. Gegus obituary".
  16. Pedro J. Miana. "Jacques Hadamard en Zaragoza" (PDF). unizar.es (in Spanish). Retrieved 2022-10-05.
  17. Academia de Ciencias de Zaragoza: Un siglo de servicio a la sociedad (in Spanish). January 2016. Retrieved 2022-10-05 – via academia.edu.
  18. "Honory [sic] doctorates". tuwien.at. Retrieved 2022-09-20.
  19. "Grazer Tagblatt Samstag, 6. Oktober 1928, page 5". onb.ac.at (in German). Retrieved 2022-09-20.

Further reading

External links

Laureates of the Nobel Prize in Chemistry
1901–1925
1926–1950
1951–1975
1976–2000
2001–present
1925 Nobel Prize laureates
Chemistry
Literature (1925)
Peace
Physics
Physiology or Medicine
  • None
Nobel Prize recipients
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
Hungarian or Hungarian-American Nobel Laureates
Chemistry
Literature
Physics
Physiology or Medicine
Economic Sciences
Categories: