Misplaced Pages

Rijndael MixColumns

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Cryptographic operation in the Rijndael encryption algorithm

The MixColumns operation performed by the Rijndael cipher or Advanced Encryption Standard is, along with the ShiftRows step, its primary source of diffusion. Each column of bytes is treated as a four-term polynomial b ( x ) = b 3 x 3 + b 2 x 2 + b 1 x + b 0 {\displaystyle b(x)=b_{3}x^{3}+b_{2}x^{2}+b_{1}x+b_{0}} , each byte representing an element in the Galois field GF ( 2 8 ) {\displaystyle \operatorname {GF} (2^{8})} . The coefficients are elements within the prime sub-field GF ( 2 ) {\displaystyle \operatorname {GF} (2)} .

Each column is multiplied with the fixed polynomial a ( x ) = 3 x 3 + x 2 + x + 2 {\displaystyle a(x)=3x^{3}+x^{2}+x+2} modulo x 4 + 1 {\displaystyle x^{4}+1} ; the inverse function is a 1 ( x ) = 11 x 3 + 13 x 2 + 9 x + 14 {\displaystyle a^{-1}(x)=11x^{3}+13x^{2}+9x+14} .

Demonstration

The polynomial a ( x ) = 3 x 3 + x 2 + x + 2 {\displaystyle a(x)=3x^{3}+x^{2}+x+2} will be expressed as a ( x ) = a 3 x 3 + a 2 x 2 + a 1 x + a 0 {\displaystyle a(x)=a_{3}x^{3}+a_{2}x^{2}+a_{1}x+a_{0}} .

Polynomial multiplication

a ( x ) b ( x ) = c ( x ) = ( a 3 x 3 + a 2 x 2 + a 1 x + a 0 ) ( b 3 x 3 + b 2 x 2 + b 1 x + b 0 ) = c 6 x 6 + c 5 x 5 + c 4 x 4 + c 3 x 3 + c 2 x 2 + c 1 x + c 0 {\displaystyle {\begin{aligned}a(x)\bullet b(x)=c(x)&=\left(a_{3}x^{3}+a_{2}x^{2}+a_{1}x+a_{0}\right)\bullet \left(b_{3}x^{3}+b_{2}x^{2}+b_{1}x+b_{0}\right)\\&=c_{6}x^{6}+c_{5}x^{5}+c_{4}x^{4}+c_{3}x^{3}+c_{2}x^{2}+c_{1}x+c_{0}\end{aligned}}}

where:

c 0 = a 0 b 0 c 1 = a 1 b 0 a 0 b 1 c 2 = a 2 b 0 a 1 b 1 a 0 b 2 c 3 = a 3 b 0 a 2 b 1 a 1 b 2 a 0 b 3 c 4 = a 3 b 1 a 2 b 2 a 1 b 3 c 5 = a 3 b 2 a 2 b 3 c 6 = a 3 b 3 {\displaystyle {\begin{aligned}c_{0}&=a_{0}\bullet b_{0}\\c_{1}&=a_{1}\bullet b_{0}\oplus a_{0}\bullet b_{1}\\c_{2}&=a_{2}\bullet b_{0}\oplus a_{1}\bullet b_{1}\oplus a_{0}\bullet b_{2}\\c_{3}&=a_{3}\bullet b_{0}\oplus a_{2}\bullet b_{1}\oplus a_{1}\bullet b_{2}\oplus a_{0}\bullet b_{3}\\c_{4}&=a_{3}\bullet b_{1}\oplus a_{2}\bullet b_{2}\oplus a_{1}\bullet b_{3}\\c_{5}&=a_{3}\bullet b_{2}\oplus a_{2}\bullet b_{3}\\c_{6}&=a_{3}\bullet b_{3}\end{aligned}}}

Modular reduction

The result c ( x ) {\displaystyle c(x)} is a seven-term polynomial, which must be reduced to a four-byte word, which is done by doing the multiplication modulo x 4 + 1 {\displaystyle x^{4}+1} .

If we do some basic polynomial modular operations we can see that:

x 6 mod ( x 4 + 1 ) = x 2 = x 2  over  GF ( 2 8 ) x 5 mod ( x 4 + 1 ) = x = x  over  GF ( 2 8 ) x 4 mod ( x 4 + 1 ) = 1 = 1  over  GF ( 2 8 ) {\displaystyle {\begin{aligned}x^{6}{\bmod {\left(x^{4}+1\right)}}&=-x^{2}=x^{2}{\text{ over }}\operatorname {GF} \left(2^{8}\right)\\x^{5}{\bmod {\left(x^{4}+1\right)}}&=-x=x{\text{ over }}\operatorname {GF} \left(2^{8}\right)\\x^{4}{\bmod {\left(x^{4}+1\right)}}&=-1=1{\text{ over }}\operatorname {GF} \left(2^{8}\right)\end{aligned}}}

In general, we can say that x i mod ( x 4 + 1 ) = x i mod 4 . {\displaystyle x^{i}{\bmod {\left(x^{4}+1\right)}}=x^{i{\bmod {4}}}.}

So

a ( x ) b ( x ) = c ( x ) mod ( x 4 + 1 ) = ( c 6 x 6 + c 5 x 5 + c 4 x 4 + c 3 x 3 + c 2 x 2 + c 1 x + c 0 ) mod ( x 4 + 1 ) = c 6 x 6 mod 4 + c 5 x 5 mod 4 + c 4 x 4 mod 4 + c 3 x 3 mod 4 + c 2 x 2 mod 4 + c 1 x 1 mod 4 + c 0 x 0 mod 4 = c 6 x 2 + c 5 x + c 4 + c 3 x 3 + c 2 x 2 + c 1 x + c 0 = c 3 x 3 + ( c 2 c 6 ) x 2 + ( c 1 c 5 ) x + c 0 c 4 = d 3 x 3 + d 2 x 2 + d 1 x + d 0 {\displaystyle {\begin{aligned}a(x)\otimes b(x)&=c(x){\bmod {\left(x^{4}+1\right)}}\\&=\left(c_{6}x^{6}+c_{5}x^{5}+c_{4}x^{4}+c_{3}x^{3}+c_{2}x^{2}+c_{1}x+c_{0}\right){\bmod {\left(x^{4}+1\right)}}\\&=c_{6}x^{6{\bmod {4}}}+c_{5}x^{5{\bmod {4}}}+c_{4}x^{4{\bmod {4}}}+c_{3}x^{3{\bmod {4}}}+c_{2}x^{2{\bmod {4}}}+c_{1}x^{1{\bmod {4}}}+c_{0}x^{0{\bmod {4}}}\\&=c_{6}x^{2}+c_{5}x+c_{4}+c_{3}x^{3}+c_{2}x^{2}+c_{1}x+c_{0}\\&=c_{3}x^{3}+\left(c_{2}\oplus c_{6}\right)x^{2}+\left(c_{1}\oplus c_{5}\right)x+c_{0}\oplus c_{4}\\&=d_{3}x^{3}+d_{2}x^{2}+d_{1}x+d_{0}\end{aligned}}}

where

d 0 = c 0 c 4 {\displaystyle d_{0}=c_{0}\oplus c_{4}}
d 1 = c 1 c 5 {\displaystyle d_{1}=c_{1}\oplus c_{5}}
d 2 = c 2 c 6 {\displaystyle d_{2}=c_{2}\oplus c_{6}}
d 3 = c 3 {\displaystyle d_{3}=c_{3}}

Matrix representation

The coefficient d 3 {\displaystyle d_{3}} , d 2 {\displaystyle d_{2}} , d 1 {\displaystyle d_{1}} and d 0 {\displaystyle d_{0}} can also be expressed as follows:

d 0 = a 0 b 0 a 3 b 1 a 2 b 2 a 1 b 3 {\displaystyle d_{0}=a_{0}\bullet b_{0}\oplus a_{3}\bullet b_{1}\oplus a_{2}\bullet b_{2}\oplus a_{1}\bullet b_{3}}
d 1 = a 1 b 0 a 0 b 1 a 3 b 2 a 2 b 3 {\displaystyle d_{1}=a_{1}\bullet b_{0}\oplus a_{0}\bullet b_{1}\oplus a_{3}\bullet b_{2}\oplus a_{2}\bullet b_{3}}
d 2 = a 2 b 0 a 1 b 1 a 0 b 2 a 3 b 3 {\displaystyle d_{2}=a_{2}\bullet b_{0}\oplus a_{1}\bullet b_{1}\oplus a_{0}\bullet b_{2}\oplus a_{3}\bullet b_{3}}
d 3 = a 3 b 0 a 2 b 1 a 1 b 2 a 0 b 3 {\displaystyle d_{3}=a_{3}\bullet b_{0}\oplus a_{2}\bullet b_{1}\oplus a_{1}\bullet b_{2}\oplus a_{0}\bullet b_{3}}

And when we replace the coefficients of a ( x ) {\displaystyle a(x)} with the constants [ 3 1 1 2 ] {\displaystyle {\begin{bmatrix}3&1&1&2\end{bmatrix}}} used in the cipher we obtain the following:

d 0 = 2 b 0 3 b 1 1 b 2 1 b 3 {\displaystyle d_{0}=2\bullet b_{0}\oplus 3\bullet b_{1}\oplus 1\bullet b_{2}\oplus 1\bullet b_{3}}
d 1 = 1 b 0 2 b 1 3 b 2 1 b 3 {\displaystyle d_{1}=1\bullet b_{0}\oplus 2\bullet b_{1}\oplus 3\bullet b_{2}\oplus 1\bullet b_{3}}
d 2 = 1 b 0 1 b 1 2 b 2 3 b 3 {\displaystyle d_{2}=1\bullet b_{0}\oplus 1\bullet b_{1}\oplus 2\bullet b_{2}\oplus 3\bullet b_{3}}
d 3 = 3 b 0 1 b 1 1 b 2 2 b 3 {\displaystyle d_{3}=3\bullet b_{0}\oplus 1\bullet b_{1}\oplus 1\bullet b_{2}\oplus 2\bullet b_{3}}

This demonstrates that the operation itself is similar to a Hill cipher. It can be performed by multiplying a coordinate vector of four numbers in Rijndael's Galois field by the following circulant MDS matrix:

[ d 0 d 1 d 2 d 3 ] = [ 2 3 1 1 1 2 3 1 1 1 2 3 3 1 1 2 ] [ b 0 b 1 b 2 b 3 ] {\displaystyle {\begin{bmatrix}d_{0}\\d_{1}\\d_{2}\\d_{3}\end{bmatrix}}={\begin{bmatrix}2&3&1&1\\1&2&3&1\\1&1&2&3\\3&1&1&2\end{bmatrix}}{\begin{bmatrix}b_{0}\\b_{1}\\b_{2}\\b_{3}\end{bmatrix}}}

Implementation example

This can be simplified somewhat in actual implementation by replacing the multiply by 2 with a single shift and conditional exclusive or, and replacing a multiply by 3 with a multiply by 2 combined with an exclusive or. A C example of such an implementation follows:

void gmix_column(unsigned char *r) {
    unsigned char a;
    unsigned char b;
    unsigned char c;
    unsigned char h;
    /* The array 'a' is simply a copy of the input array 'r'
     * The array 'b' is each element of the array 'a' multiplied by 2
     * in Rijndael's Galois field
     * a ^ b is element n multiplied by 3 in Rijndael's Galois field */ 
    for (c = 0; c < 4; c++) {
        a = r;
        /* h is set to 0x01 if the high bit of r is set, 0x00 otherwise */
        h = r >> 7;    /* logical right shift, thus shifting in zeros */
        b = r << 1; /* implicitly removes high bit because b is an 8-bit char, so we xor by 0x1b and not 0x11b in the next line */
        b ^= h * 0x1B; /* Rijndael's Galois field */
    }
    r = b ^ a ^ a ^ b ^ a; /* 2 * a0 + a3 + a2 + 3 * a1 */
    r = b ^ a ^ a ^ b ^ a; /* 2 * a1 + a0 + a3 + 3 * a2 */
    r = b ^ a ^ a ^ b ^ a; /* 2 * a2 + a1 + a0 + 3 * a3 */
    r = b ^ a ^ a ^ b ^ a; /* 2 * a3 + a2 + a1 + 3 * a0 */
}

A C# example

private byte GMul(byte a, byte b) { // Galois Field (256) Multiplication of two Bytes
    byte p = 0;
    for (int counter = 0; counter < 8; counter++) {
        if ((b & 1) != 0) {
            p ^= a;
        }
        bool hi_bit_set = (a & 0x80) != 0;
        a <<= 1;
        if (hi_bit_set) {
            a ^= 0x1B; /* x^8 + x^4 + x^3 + x + 1 */
        }
        b >>= 1;
    }
    return p;
}
private void MixColumns() { // 's' is the main State matrix, 'ss' is a temp matrix of the same dimensions as 's'.
    Array.Clear(ss, 0, ss.Length);
    for (int c = 0; c < 4; c++) {
        ss = (byte)(GMul(0x02, s) ^ GMul(0x03, s) ^ s ^ s);
        ss = (byte)(s ^ GMul(0x02, s) ^ GMul(0x03, s) ^ s);
        ss = (byte)(s ^ s ^ GMul(0x02, s) ^ GMul(0x03, s));
        ss = (byte)(GMul(0x03, s) ^ s ^ s ^ GMul(0x02, s));
    }
    ss.CopyTo(s, 0);
}

Test vectors for MixColumn()

Hexadecimal Decimal
Before After Before After
63 47 a2 f0 5d e0 70 bb 99 71 162 240 93 224 112 187
f2 0a 22 5c 9f dc 58 9d 242 10 34 92 159 220 88 157
01 01 01 01 01 01 01 01 1 1 1 1 1 1 1 1
c6 c6 c6 c6 c6 c6 c6 c6 198 198 198 198 198 198 198 198
d4 d4 d4 d5 d5 d5 d7 d6 212 212 212 213 213 213 215 214
2d 26 31 4c 4d 7e bd f8 45 38 49 76 77 126 189 248

InverseMixColumns

The MixColumns operation has the following inverse (numbers are Hexadecimal):

[ b 0 b 1 b 2 b 3 ] = [ 63 47 a 2 f 0 9 c 63 c 5 f 2 7 b 7 c f 0 a b c a a f 76 76 ] [ d 0 d 1 d 2 d 3 ] = [ 02 03 01 01 01 02 03 01 01 01 02 03 03 01 01 02 ] {\displaystyle {\begin{bmatrix}b_{0}\\b_{1}\\b_{2}\\b_{3}\end{bmatrix}}={\begin{bmatrix}63&47&a2&f0\\9c&63&c5&f2\\7b&7c&f0&ab\\ca&af&76&76\end{bmatrix}}{\begin{bmatrix}d_{0}\\d_{1}\\d_{2}\\d_{3}\end{bmatrix}}={\begin{bmatrix}02&03&01&01\\01&02&03&01\\01&01&02&03\\03&01&01&02\\\end{bmatrix}}}

Galois Multiplication lookup tables

Commonly, rather than implementing Galois multiplication, Rijndael implementations simply use pre-calculated lookup tables to perform the byte multiplication by 2, 3, 9, 11, 13, and 14.

For instance, in C# these tables can be stored in Byte arrays. In order to compute

p * 3

The result is obtained this way:

result = table_3

Some of the most common instances of these lookup tables are as follows:

Multiply by 2:

0x00,0x02,0x04,0x06,0x08,0x0a,0x0c,0x0e,0x10,0x12,0x14,0x16,0x18,0x1a,0x1c,0x1e,
0x20,0x22,0x24,0x26,0x28,0x2a,0x2c,0x2e,0x30,0x32,0x34,0x36,0x38,0x3a,0x3c,0x3e,
0x40,0x42,0x44,0x46,0x48,0x4a,0x4c,0x4e,0x50,0x52,0x54,0x56,0x58,0x5a,0x5c,0x5e,
0x60,0x62,0x64,0x66,0x68,0x6a,0x6c,0x6e,0x70,0x72,0x74,0x76,0x78,0x7a,0x7c,0x7e,
0x80,0x82,0x84,0x86,0x88,0x8a,0x8c,0x8e,0x90,0x92,0x94,0x96,0x98,0x9a,0x9c,0x9e,
0xa0,0xa2,0xa4,0xa6,0xa8,0xaa,0xac,0xae,0xb0,0xb2,0xb4,0xb6,0xb8,0xba,0xbc,0xbe,
0xc0,0xc2,0xc4,0xc6,0xc8,0xca,0xcc,0xce,0xd0,0xd2,0xd4,0xd6,0xd8,0xda,0xdc,0xde,
0xe0,0xe2,0xe4,0xe6,0xe8,0xea,0xec,0xee,0xf0,0xf2,0xf4,0xf6,0xf8,0xfa,0xfc,0xfe,
0x1b,0x19,0x1f,0x1d,0x13,0x11,0x17,0x15,0x0b,0x09,0x0f,0x0d,0x03,0x01,0x07,0x05,
0x3b,0x39,0x3f,0x3d,0x33,0x31,0x37,0x35,0x2b,0x29,0x2f,0x2d,0x23,0x21,0x27,0x25,
0x5b,0x59,0x5f,0x5d,0x53,0x51,0x57,0x55,0x4b,0x49,0x4f,0x4d,0x43,0x41,0x47,0x45,
0x7b,0x79,0x7f,0x7d,0x73,0x71,0x77,0x75,0x6b,0x69,0x6f,0x6d,0x63,0x61,0x67,0x65,
0x9b,0x99,0x9f,0x9d,0x93,0x91,0x97,0x95,0x8b,0x89,0x8f,0x8d,0x83,0x81,0x87,0x85,
0xbb,0xb9,0xbf,0xbd,0xb3,0xb1,0xb7,0xb5,0xab,0xa9,0xaf,0xad,0xa3,0xa1,0xa7,0xa5,
0xdb,0xd9,0xdf,0xdd,0xd3,0xd1,0xd7,0xd5,0xcb,0xc9,0xcf,0xcd,0xc3,0xc1,0xc7,0xc5,
0xfb,0xf9,0xff,0xfd,0xf3,0xf1,0xf7,0xf5,0xeb,0xe9,0xef,0xed,0xe3,0xe1,0xe7,0xe5

Multiply by 3:

0x00,0x03,0x06,0x05,0x0c,0x0f,0x0a,0x09,0x18,0x1b,0x1e,0x1d,0x14,0x17,0x12,0x11,
0x30,0x33,0x36,0x35,0x3c,0x3f,0x3a,0x39,0x28,0x2b,0x2e,0x2d,0x24,0x27,0x22,0x21,
0x60,0x63,0x66,0x65,0x6c,0x6f,0x6a,0x69,0x78,0x7b,0x7e,0x7d,0x74,0x77,0x72,0x71,
0x50,0x53,0x56,0x55,0x5c,0x5f,0x5a,0x59,0x48,0x4b,0x4e,0x4d,0x44,0x47,0x42,0x41,
0xc0,0xc3,0xc6,0xc5,0xcc,0xcf,0xca,0xc9,0xd8,0xdb,0xde,0xdd,0xd4,0xd7,0xd2,0xd1,
0xf0,0xf3,0xf6,0xf5,0xfc,0xff,0xfa,0xf9,0xe8,0xeb,0xee,0xed,0xe4,0xe7,0xe2,0xe1,
0xa0,0xa3,0xa6,0xa5,0xac,0xaf,0xaa,0xa9,0xb8,0xbb,0xbe,0xbd,0xb4,0xb7,0xb2,0xb1,
0x90,0x93,0x96,0x95,0x9c,0x9f,0x9a,0x99,0x88,0x8b,0x8e,0x8d,0x84,0x87,0x82,0x81,
0x9b,0x98,0x9d,0x9e,0x97,0x94,0x91,0x92,0x83,0x80,0x85,0x86,0x8f,0x8c,0x89,0x8a,
0xab,0xa8,0xad,0xae,0xa7,0xa4,0xa1,0xa2,0xb3,0xb0,0xb5,0xb6,0xbf,0xbc,0xb9,0xba,
0xfb,0xf8,0xfd,0xfe,0xf7,0xf4,0xf1,0xf2,0xe3,0xe0,0xe5,0xe6,0xef,0xec,0xe9,0xea,
0xcb,0xc8,0xcd,0xce,0xc7,0xc4,0xc1,0xc2,0xd3,0xd0,0xd5,0xd6,0xdf,0xdc,0xd9,0xda,
0x5b,0x58,0x5d,0x5e,0x57,0x54,0x51,0x52,0x43,0x40,0x45,0x46,0x4f,0x4c,0x49,0x4a,
0x6b,0x68,0x6d,0x6e,0x67,0x64,0x61,0x62,0x73,0x70,0x75,0x76,0x7f,0x7c,0x79,0x7a,
0x3b,0x38,0x3d,0x3e,0x37,0x34,0x31,0x32,0x23,0x20,0x25,0x26,0x2f,0x2c,0x29,0x2a,
0x0b,0x08,0x0d,0x0e,0x07,0x04,0x01,0x02,0x13,0x10,0x15,0x16,0x1f,0x1c,0x19,0x1a

Multiply by 9:

0x00,0x09,0x12,0x1b,0x24,0x2d,0x36,0x3f,0x48,0x41,0x5a,0x53,0x6c,0x65,0x7e,0x77,
0x90,0x99,0x82,0x8b,0xb4,0xbd,0xa6,0xaf,0xd8,0xd1,0xca,0xc3,0xfc,0xf5,0xee,0xe7,
0x3b,0x32,0x29,0x20,0x1f,0x16,0x0d,0x04,0x73,0x7a,0x61,0x68,0x57,0x5e,0x45,0x4c,
0xab,0xa2,0xb9,0xb0,0x8f,0x86,0x9d,0x94,0xe3,0xea,0xf1,0xf8,0xc7,0xce,0xd5,0xdc,
0x76,0x7f,0x64,0x6d,0x52,0x5b,0x40,0x49,0x3e,0x37,0x2c,0x25,0x1a,0x13,0x08,0x01,
0xe6,0xef,0xf4,0xfd,0xc2,0xcb,0xd0,0xd9,0xae,0xa7,0xbc,0xb5,0x8a,0x83,0x98,0x91,
0x4d,0x44,0x5f,0x56,0x69,0x60,0x7b,0x72,0x05,0x0c,0x17,0x1e,0x21,0x28,0x33,0x3a,
0xdd,0xd4,0xcf,0xc6,0xf9,0xf0,0xeb,0xe2,0x95,0x9c,0x87,0x8e,0xb1,0xb8,0xa3,0xaa,
0xec,0xe5,0xfe,0xf7,0xc8,0xc1,0xda,0xd3,0xa4,0xad,0xb6,0xbf,0x80,0x89,0x92,0x9b,
0x7c,0x75,0x6e,0x67,0x58,0x51,0x4a,0x43,0x34,0x3d,0x26,0x2f,0x10,0x19,0x02,0x0b,
0xd7,0xde,0xc5,0xcc,0xf3,0xfa,0xe1,0xe8,0x9f,0x96,0x8d,0x84,0xbb,0xb2,0xa9,0xa0,
0x47,0x4e,0x55,0x5c,0x63,0x6a,0x71,0x78,0x0f,0x06,0x1d,0x14,0x2b,0x22,0x39,0x30,
0x9a,0x93,0x88,0x81,0xbe,0xb7,0xac,0xa5,0xd2,0xdb,0xc0,0xc9,0xf6,0xff,0xe4,0xed,
0x0a,0x03,0x18,0x11,0x2e,0x27,0x3c,0x35,0x42,0x4b,0x50,0x59,0x66,0x6f,0x74,0x7d,
0xa1,0xa8,0xb3,0xba,0x85,0x8c,0x97,0x9e,0xe9,0xe0,0xfb,0xf2,0xcd,0xc4,0xdf,0xd6,
0x31,0x38,0x23,0x2a,0x15,0x1c,0x07,0x0e,0x79,0x70,0x6b,0x62,0x5d,0x54,0x4f,0x46

Multiply by 11 (0xB):

0x00,0x0b,0x16,0x1d,0x2c,0x27,0x3a,0x31,0x58,0x53,0x4e,0x45,0x74,0x7f,0x62,0x69,
0xb0,0xbb,0xa6,0xad,0x9c,0x97,0x8a,0x81,0xe8,0xe3,0xfe,0xf5,0xc4,0xcf,0xd2,0xd9,
0x7b,0x70,0x6d,0x66,0x57,0x5c,0x41,0x4a,0x23,0x28,0x35,0x3e,0x0f,0x04,0x19,0x12,
0xcb,0xc0,0xdd,0xd6,0xe7,0xec,0xf1,0xfa,0x93,0x98,0x85,0x8e,0xbf,0xb4,0xa9,0xa2,
0xf6,0xfd,0xe0,0xeb,0xda,0xd1,0xcc,0xc7,0xae,0xa5,0xb8,0xb3,0x82,0x89,0x94,0x9f,
0x46,0x4d,0x50,0x5b,0x6a,0x61,0x7c,0x77,0x1e,0x15,0x08,0x03,0x32,0x39,0x24,0x2f,
0x8d,0x86,0x9b,0x90,0xa1,0xaa,0xb7,0xbc,0xd5,0xde,0xc3,0xc8,0xf9,0xf2,0xef,0xe4,
0x3d,0x36,0x2b,0x20,0x11,0x1a,0x07,0x0c,0x65,0x6e,0x73,0x78,0x49,0x42,0x5f,0x54,
0xf7,0xfc,0xe1,0xea,0xdb,0xd0,0xcd,0xc6,0xaf,0xa4,0xb9,0xb2,0x83,0x88,0x95,0x9e,
0x47,0x4c,0x51,0x5a,0x6b,0x60,0x7d,0x76,0x1f,0x14,0x09,0x02,0x33,0x38,0x25,0x2e,
0x8c,0x87,0x9a,0x91,0xa0,0xab,0xb6,0xbd,0xd4,0xdf,0xc2,0xc9,0xf8,0xf3,0xee,0xe5,
0x3c,0x37,0x2a,0x21,0x10,0x1b,0x06,0x0d,0x64,0x6f,0x72,0x79,0x48,0x43,0x5e,0x55,
0x01,0x0a,0x17,0x1c,0x2d,0x26,0x3b,0x30,0x59,0x52,0x4f,0x44,0x75,0x7e,0x63,0x68,
0xb1,0xba,0xa7,0xac,0x9d,0x96,0x8b,0x80,0xe9,0xe2,0xff,0xf4,0xc5,0xce,0xd3,0xd8,
0x7a,0x71,0x6c,0x67,0x56,0x5d,0x40,0x4b,0x22,0x29,0x34,0x3f,0x0e,0x05,0x18,0x13,
0xca,0xc1,0xdc,0xd7,0xe6,0xed,0xf0,0xfb,0x92,0x99,0x84,0x8f,0xbe,0xb5,0xa8,0xa3

Multiply by 13 (0xD):

0x00,0x0d,0x1a,0x17,0x34,0x39,0x2e,0x23,0x68,0x65,0x72,0x7f,0x5c,0x51,0x46,0x4b,
0xd0,0xdd,0xca,0xc7,0xe4,0xe9,0xfe,0xf3,0xb8,0xb5,0xa2,0xaf,0x8c,0x81,0x96,0x9b,
0xbb,0xb6,0xa1,0xac,0x8f,0x82,0x95,0x98,0xd3,0xde,0xc9,0xc4,0xe7,0xea,0xfd,0xf0,
0x6b,0x66,0x71,0x7c,0x5f,0x52,0x45,0x48,0x03,0x0e,0x19,0x14,0x37,0x3a,0x2d,0x20,
0x6d,0x60,0x77,0x7a,0x59,0x54,0x43,0x4e,0x05,0x08,0x1f,0x12,0x31,0x3c,0x2b,0x26,
0xbd,0xb0,0xa7,0xaa,0x89,0x84,0x93,0x9e,0xd5,0xd8,0xcf,0xc2,0xe1,0xec,0xfb,0xf6,
0xd6,0xdb,0xcc,0xc1,0xe2,0xef,0xf8,0xf5,0xbe,0xb3,0xa4,0xa9,0x8a,0x87,0x90,0x9d,
0x06,0x0b,0x1c,0x11,0x32,0x3f,0x28,0x25,0x6e,0x63,0x74,0x79,0x5a,0x57,0x40,0x4d,
0xda,0xd7,0xc0,0xcd,0xee,0xe3,0xf4,0xf9,0xb2,0xbf,0xa8,0xa5,0x86,0x8b,0x9c,0x91,
0x0a,0x07,0x10,0x1d,0x3e,0x33,0x24,0x29,0x62,0x6f,0x78,0x75,0x56,0x5b,0x4c,0x41,
0x61,0x6c,0x7b,0x76,0x55,0x58,0x4f,0x42,0x09,0x04,0x13,0x1e,0x3d,0x30,0x27,0x2a,
0xb1,0xbc,0xab,0xa6,0x85,0x88,0x9f,0x92,0xd9,0xd4,0xc3,0xce,0xed,0xe0,0xf7,0xfa,
0xb7,0xba,0xad,0xa0,0x83,0x8e,0x99,0x94,0xdf,0xd2,0xc5,0xc8,0xeb,0xe6,0xf1,0xfc,
0x67,0x6a,0x7d,0x70,0x53,0x5e,0x49,0x44,0x0f,0x02,0x15,0x18,0x3b,0x36,0x21,0x2c,
0x0c,0x01,0x16,0x1b,0x38,0x35,0x22,0x2f,0x64,0x69,0x7e,0x73,0x50,0x5d,0x4a,0x47,
0xdc,0xd1,0xc6,0xcb,0xe8,0xe5,0xf2,0xff,0xb4,0xb9,0xae,0xa3,0x80,0x8d,0x9a,0x97

Multiply by 14 (0xE):

0x00,0x0e,0x1c,0x12,0x38,0x36,0x24,0x2a,0x70,0x7e,0x6c,0x62,0x48,0x46,0x54,0x5a,
0xe0,0xee,0xfc,0xf2,0xd8,0xd6,0xc4,0xca,0x90,0x9e,0x8c,0x82,0xa8,0xa6,0xb4,0xba,
0xdb,0xd5,0xc7,0xc9,0xe3,0xed,0xff,0xf1,0xab,0xa5,0xb7,0xb9,0x93,0x9d,0x8f,0x81,
0x3b,0x35,0x27,0x29,0x03,0x0d,0x1f,0x11,0x4b,0x45,0x57,0x59,0x73,0x7d,0x6f,0x61,
0xad,0xa3,0xb1,0xbf,0x95,0x9b,0x89,0x87,0xdd,0xd3,0xc1,0xcf,0xe5,0xeb,0xf9,0xf7,
0x4d,0x43,0x51,0x5f,0x75,0x7b,0x69,0x67,0x3d,0x33,0x21,0x2f,0x05,0x0b,0x19,0x17,
0x76,0x78,0x6a,0x64,0x4e,0x40,0x52,0x5c,0x06,0x08,0x1a,0x14,0x3e,0x30,0x22,0x2c,
0x96,0x98,0x8a,0x84,0xae,0xa0,0xb2,0xbc,0xe6,0xe8,0xfa,0xf4,0xde,0xd0,0xc2,0xcc,
0x41,0x4f,0x5d,0x53,0x79,0x77,0x65,0x6b,0x31,0x3f,0x2d,0x23,0x09,0x07,0x15,0x1b,
0xa1,0xaf,0xbd,0xb3,0x99,0x97,0x85,0x8b,0xd1,0xdf,0xcd,0xc3,0xe9,0xe7,0xf5,0xfb,
0x9a,0x94,0x86,0x88,0xa2,0xac,0xbe,0xb0,0xea,0xe4,0xf6,0xf8,0xd2,0xdc,0xce,0xc0,
0x7a,0x74,0x66,0x68,0x42,0x4c,0x5e,0x50,0x0a,0x04,0x16,0x18,0x32,0x3c,0x2e,0x20,
0xec,0xe2,0xf0,0xfe,0xd4,0xda,0xc8,0xc6,0x9c,0x92,0x80,0x8e,0xa4,0xaa,0xb8,0xb6,
0x0c,0x02,0x10,0x1e,0x34,0x3a,0x28,0x26,0x7c,0x72,0x60,0x6e,0x44,0x4a,0x58,0x56,
0x37,0x39,0x2b,0x25,0x0f,0x01,0x13,0x1d,0x47,0x49,0x5b,0x55,0x7f,0x71,0x63,0x6d,
0xd7,0xd9,0xcb,0xc5,0xef,0xe1,0xf3,0xfd,0xa7,0xa9,0xbb,0xb5,0x9f,0x91,0x83,0x8d

References

Categories: