Misplaced Pages

Ruelle zeta function

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Ruelle zeta-function)

In mathematics, the Ruelle zeta function is a zeta function associated with a dynamical system. It is named after mathematical physicist David Ruelle.

Formal definition

Let f be a function defined on a manifold M, such that the set of fixed points Fix(f) is finite for all n > 1. Further let φ be a function on M with values in d × d complex matrices. The zeta function of the first kind is

ζ ( z ) = exp ( m 1 z m m x Fix ( f m ) Tr ( k = 0 m 1 φ ( f k ( x ) ) ) ) {\displaystyle \zeta (z)=\exp \left(\sum _{m\geq 1}{\frac {z^{m}}{m}}\sum _{x\in \operatorname {Fix} (f^{m})}\operatorname {Tr} \left(\prod _{k=0}^{m-1}\varphi (f^{k}(x))\right)\right)}

Examples

In the special case d = 1, φ = 1, we have

ζ ( z ) = exp ( m 1 z m m | Fix ( f m ) | ) {\displaystyle \zeta (z)=\exp \left(\sum _{m\geq 1}{\frac {z^{m}}{m}}\left|\operatorname {Fix} (f^{m})\right|\right)}

which is the Artin–Mazur zeta function.

The Ihara zeta function is an example of a Ruelle zeta function.

See also

References

  1. ^ Terras (2010) p. 28
  2. Terras (2010) p. 29
Category: