Misplaced Pages

Rule of replacement

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Rules of replacement) Inference rule that may be applied to only a particular segment of an expression
Transformation rules
Propositional calculus
Rules of inference
Rules of replacement
Predicate logic
Rules of inference

In logic, a rule of replacement is a transformation rule that may be applied to only a particular segment of an expression. A logical system may be constructed so that it uses either axioms, rules of inference, or both as transformation rules for logical expressions in the system. Whereas a rule of inference is always applied to a whole logical expression, a rule of replacement may be applied to only a particular segment. Within the context of a logical proof, logically equivalent expressions may replace each other. Rules of replacement are used in propositional logic to manipulate propositions.

Common rules of replacement include de Morgan's laws, commutation, association, distribution, double negation, transposition, material implication, logical equivalence, exportation, and tautology.

Table: Rules of Replacement

The rules above can be summed up in the following table. The "Tautology" column shows how to interpret the notation of a given rule.

Rules of inference Tautology Name
( p q ) r p ( q r ) ¯ {\displaystyle {\begin{aligned}(p\vee q)\vee r\\\therefore {\overline {p\vee (q\vee r)}}\\\end{aligned}}} ( ( p q ) r ) ( p ( q r ) ) {\displaystyle ((p\vee q)\vee r)\rightarrow (p\vee (q\vee r))} Associative
p q q p ¯ {\displaystyle {\begin{aligned}p\wedge q\\\therefore {\overline {q\wedge p}}\\\end{aligned}}} ( p q ) ( q p ) {\displaystyle (p\wedge q)\rightarrow (q\wedge p)} Commutative
( p q ) r p ( q r ) ¯ {\displaystyle {\begin{aligned}(p\wedge q)\rightarrow r\\\therefore {\overline {p\rightarrow (q\rightarrow r)}}\\\end{aligned}}} ( ( p q ) r ) ( p ( q r ) ) {\displaystyle ((p\wedge q)\rightarrow r)\rightarrow (p\rightarrow (q\rightarrow r))} Exportation
p q ¬ q ¬ p ¯ {\displaystyle {\begin{aligned}p\rightarrow q\\\therefore {\overline {\neg q\rightarrow \neg p}}\\\end{aligned}}} ( p q ) ( ¬ q ¬ p ) {\displaystyle (p\rightarrow q)\rightarrow (\neg q\rightarrow \neg p)} Transposition or contraposition law
p q ¬ p q ¯ {\displaystyle {\begin{aligned}p\rightarrow q\\\therefore {\overline {\neg p\vee q}}\\\end{aligned}}} ( p q ) ( ¬ p q ) {\displaystyle (p\rightarrow q)\rightarrow (\neg p\vee q)} Material implication
( p q ) r ( p r ) ( q r ) ¯ {\displaystyle {\begin{aligned}(p\vee q)\wedge r\\\therefore {\overline {(p\wedge r)\vee (q\wedge r)}}\\\end{aligned}}} ( ( p q ) r ) ( ( p r ) ( q r ) ) {\displaystyle ((p\vee q)\wedge r)\rightarrow ((p\wedge r)\vee (q\wedge r))} Distributive
p q p q ¯ {\displaystyle {\begin{aligned}p\\q\\\therefore {\overline {p\wedge q}}\\\end{aligned}}} ( ( p ) ( q ) ) ( p q ) {\displaystyle ((p)\wedge (q))\rightarrow (p\wedge q)} Conjunction
p ¬ ¬ p ¯ {\displaystyle {\begin{aligned}p\\\therefore {\overline {\neg \neg p}}\\\end{aligned}}} p ( ¬ ¬ p ) {\displaystyle p\rightarrow (\neg \neg p)} Double negation introduction
¬ ¬ p p ¯ {\displaystyle {\begin{aligned}{\neg \neg p}\\\therefore {\overline {p}}\\\end{aligned}}} ( ¬ ¬ p ) p {\displaystyle (\neg \neg p)\rightarrow p} Double negation elimination

See also

Notes

  1. not admitted in intuitionistic logic

References

  1. Copi, Irving M.; Cohen, Carl (2005). Introduction to Logic. Prentice Hall.
  2. Hurley, Patrick (1991). A Concise Introduction to Logic 4th edition. Wadsworth Publishing. ISBN 9780534145156.
  3. Moore and Parker
  4. Kenneth H. Rosen: Discrete Mathematics and its Applications, Fifth Edition, p. 58.


Stub icon

This logic-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: