Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
(Redirected from Sarrus's rule)
Mnemonic device for calculating 3 by 3 matrix determinants
then its determinant can be computed by the following scheme.
Write out the first two columns of the matrix to the right of the third column, giving five columns in a row. Then add the products of the diagonals going from top to bottom (solid) and subtract the products of the diagonals going from bottom to top (dashed). This yields
A similar scheme based on diagonals works for matrices:
Both are special cases of the Leibniz formula, which however does not yield similar memorization schemes for larger matrices. Sarrus' rule can also be derived using the Laplace expansion of a matrix.
Another way of thinking of Sarrus' rule is to imagine that the matrix is wrapped around a cylinder, such that the right and left edges are joined.
References
^ Fischer, Gerd (1985). Analytische Geometrie (in German) (4th ed.). Wiesbaden: Vieweg. p. 145. ISBN3-528-37235-4.