This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (May 2024) (Learn how and when to remove this message) |
In geometry, the Schiffler point of a triangle is a triangle center, a point defined from the triangle that is equivariant under Euclidean transformations of the triangle. This point was first defined and investigated by Schiffler et al. (1985).
Definition
A triangle △ABC with the incenter I has its Schiffler point at the point of concurrence of the Euler lines of the four triangles △BCI, △CAI, △ABI, △ABC. Schiffler's theorem states that these four lines all meet at a single point.
Coordinates
Trilinear coordinates for the Schiffler point are
or, equivalently,
where a, b, c denote the side lengths of triangle △ABC.
References
- Emelyanov, Lev; Emelyanova, Tatiana (2003). "A note on the Schiffler point". Forum Geometricorum. 3: 113–116. MR 2004116.
- Hatzipolakis, Antreas P.; van Lamoen, Floor; Wolk, Barry; Yiu, Paul (2001). "Concurrency of four Euler lines". Forum Geometricorum. 1: 59–68. MR 1891516.
- Nguyen, Khoa Lu (2005). "On the complement of the Schiffler point". Forum Geometricorum. 5: 149–164. MR 2195745. Archived from the original on 2007-01-15. Retrieved 2007-01-17.
- Schiffler, Kurt (1985). "Problem 1018" (PDF). Crux Mathematicorum. 11: 51. Retrieved September 24, 2023.
- Veldkamp, G. R. & van der Spek, W. A. (1986). "Solution to Problem 1018" (PDF). Crux Mathematicorum. 12: 150–152. Retrieved September 24, 2023.
- Thas, Charles (2004). "On the Schiffler center". Forum Geometricorum. 4: 85–95. MR 2081772. Archived from the original on 2007-03-19. Retrieved 2007-01-17.