Misplaced Pages

Scott information system

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Logical deductive system

In domain theory, a branch of mathematics and computer science, a Scott information system is a primitive kind of logical deductive system often used as an alternative way of presenting Scott domains.

Definition

A Scott information system, A, is an ordered triple ( T , C o n , ) {\displaystyle (T,Con,\vdash )}

  • T  is a set of tokens (the basic units of information) {\displaystyle T{\mbox{ is a set of tokens (the basic units of information)}}}
  • C o n P f ( T )  the finite subsets of  T {\displaystyle Con\subseteq {\mathcal {P}}_{f}(T){\mbox{ the finite subsets of }}T}
  • ( C o n { } ) × T {\displaystyle {\vdash }\subseteq (Con\setminus \lbrace \emptyset \rbrace )\times T}

satisfying

  1. If  a X C o n  then  X a {\displaystyle {\mbox{If }}a\in X\in Con{\mbox{ then }}X\vdash a}
  2. If  X Y  and  Y a , then  X a {\displaystyle {\mbox{If }}X\vdash Y{\mbox{ and }}Y\vdash a{\mbox{, then }}X\vdash a}
  3. If  X a  then  X { a } C o n {\displaystyle {\mbox{If }}X\vdash a{\mbox{ then }}X\cup \{a\}\in Con}
  4. a T : { a } C o n {\displaystyle \forall a\in T:\{a\}\in Con}
  5. If  X C o n  and  X X  then  X C o n . {\displaystyle {\mbox{If }}X\in Con{\mbox{ and }}X^{\prime }\,\subseteq X{\mbox{ then }}X^{\prime }\in Con.}

Here X Y {\displaystyle X\vdash Y} means a Y , X a . {\displaystyle \forall a\in Y,X\vdash a.}

Examples

Natural numbers

The return value of a partial recursive function, which either returns a natural number or goes into an infinite recursion, can be expressed as a simple Scott information system as follows:

  • T := N {\displaystyle T:=\mathbb {N} }
  • C o n := { } { { n } n N } {\displaystyle Con:=\{\emptyset \}\cup \{\{n\}\mid n\in \mathbb {N} \}}
  • X a a X . {\displaystyle X\vdash a\iff a\in X.}

That is, the result can either be a natural number, represented by the singleton set { n } {\displaystyle \{n\}} , or "infinite recursion," represented by {\displaystyle \emptyset } .

Of course, the same construction can be carried out with any other set instead of N {\displaystyle \mathbb {N} } .

Propositional calculus

The propositional calculus gives us a very simple Scott information system as follows:

  • T := { ϕ ϕ  is satisfiable } {\displaystyle T:=\{\phi \mid \phi {\mbox{ is satisfiable}}\}}
  • C o n := { X P f ( T ) X  is consistent } {\displaystyle Con:=\{X\in {\mathcal {P}}_{f}(T)\mid X{\mbox{ is consistent}}\}}
  • X a X a  in the propositional calculus . {\displaystyle X\vdash a\iff X\vdash a{\mbox{ in the propositional calculus}}.}

Scott domains

Let D be a Scott domain. Then we may define an information system as follows

  • T := D 0 {\displaystyle T:=D^{0}} the set of compact elements of D {\displaystyle D}
  • C o n := { X P f ( T ) X  has an upper bound } {\displaystyle Con:=\{X\in {\mathcal {P}}_{f}(T)\mid X{\mbox{ has an upper bound}}\}}
  • X d d X . {\displaystyle X\vdash d\iff d\sqsubseteq \bigsqcup X.}

Let I {\displaystyle {\mathcal {I}}} be the mapping that takes us from a Scott domain, D, to the information system defined above.

Information systems and Scott domains

Given an information system, A = ( T , C o n , ) {\displaystyle A=(T,Con,\vdash )} , we can build a Scott domain as follows.

  • Definition: x T {\displaystyle x\subseteq T} is a point if and only if
    • If  X f x  then  X C o n {\displaystyle {\mbox{If }}X\subseteq _{f}x{\mbox{ then }}X\in Con}
    • If  X a  and  X f x  then  a x . {\displaystyle {\mbox{If }}X\vdash a{\mbox{ and }}X\subseteq _{f}x{\mbox{ then }}a\in x.}

Let D ( A ) {\displaystyle {\mathcal {D}}(A)} denote the set of points of A with the subset ordering. D ( A ) {\displaystyle {\mathcal {D}}(A)} will be a countably based Scott domain when T is countable. In general, for any Scott domain D and information system A

  • D ( I ( D ) ) D {\displaystyle {\mathcal {D}}({\mathcal {I}}(D))\cong D}
  • I ( D ( A ) ) A {\displaystyle {\mathcal {I}}({\mathcal {D}}(A))\cong A}

where the second congruence is given by approximable mappings.

See also

References

  • Glynn Winskel: "The Formal Semantics of Programming Languages: An Introduction", MIT Press, 1993 (chapter 12)
Categories: