Misplaced Pages

Secure Hash Algorithms

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Secure Hash Algorithm) Family of cryptographic hash functions

The Secure Hash Algorithms are a family of cryptographic hash functions published by the National Institute of Standards and Technology (NIST) as a U.S. Federal Information Processing Standard (FIPS), including:

  • SHA-0: A retronym applied to the original version of the 160-bit hash function published in 1993 under the name "SHA". It was withdrawn shortly after publication due to an undisclosed "significant flaw" and replaced by the slightly revised version SHA-1.
  • SHA-1: A 160-bit hash function which resembles the earlier MD5 algorithm. This was designed by the National Security Agency (NSA) to be part of the Digital Signature Algorithm. Cryptographic weaknesses were discovered in SHA-1, and the standard was no longer approved for most cryptographic uses after 2010.
  • SHA-2: A family of two similar hash functions, with different block sizes, known as SHA-256 and SHA-512. They differ in the word size; SHA-256 uses 32-bit words where SHA-512 uses 64-bit words. There are also truncated versions of each standard, known as SHA-224, SHA-384, SHA-512/224 and SHA-512/256. These were also designed by the NSA.
  • SHA-3: A hash function formerly called Keccak, chosen in 2012 after a public competition among non-NSA designers. It supports the same hash lengths as SHA-2, and its internal structure differs significantly from the rest of the SHA family.

The corresponding standards are FIPS PUB 180 (original SHA), FIPS PUB 180-1 (SHA-1), FIPS PUB 180-2 (SHA-1, SHA-256, SHA-384, and SHA-512). NIST has updated Draft FIPS Publication 202, SHA-3 Standard separate from the Secure Hash Standard (SHS).

Comparison of SHA functions

In the table below, internal state means the "internal hash sum" after each compression of a data block.

Further information: Merkle–Damgård construction
Comparison of SHA functions
Algorithm and variant Output size
(bits)
Internal
state size
(bits)
Block size
(bits)
Rounds Operations Security against collision attacks
(bits)
Security against length extension attacks
(bits)
Performance on Skylake (median cpb) First published
Long messages 8 bytes
MD5 (as reference) 128 128
(4 × 32)
512 4
(16 operations in each round)
And, Xor, Or, Rot, Add (mod 2) ≤ 18
(collisions found)
0 4.99 55.00 1992
SHA-0 160 160
(5 × 32)
512 80 And, Xor, Or, Rot, Add (mod 2) < 34
(collisions found)
0 ≈ SHA-1 ≈ SHA-1 1993
SHA-1 < 63
(collisions found)
3.47 52.00 1995
SHA-2 SHA-224
SHA-256
224
256
256
(8 × 32)
512 64 And, Xor, Or,
Rot, Shr, Add (mod 2)
112
128
32
0
7.62
7.63
84.50
85.25
2004
2001
SHA-384 384 512
(8 × 64)
1024 80 And, Xor, Or,
Rot, Shr, Add (mod 2)
192 128 5.12 135.75 2001
SHA-512 512 256 0 5.06 135.50 2001
SHA-512/224
SHA-512/256
224
256
112
128
288
256
≈ SHA-384 ≈ SHA-384 2012
SHA-3 SHA3-224
SHA3-256
SHA3-384
SHA3-512
224
256
384
512
1600
(5 × 5 × 64)
1152
1088
832
576
24 And, Xor, Rot, Not 112
128
192
256
448
512
768
1024
8.12
8.59
11.06
15.88
154.25
155.50
164.00
164.00
2015
SHAKE128
SHAKE256
d (arbitrary)
d (arbitrary)
1344
1088
min(d/2, 128)
min(d/2, 256)
256
512
7.08
8.59
155.25
155.50

Validation

Main article: Cryptographic Module Validation Program

All SHA-family algorithms, as FIPS-approved security functions, are subject to official validation by the CMVP (Cryptographic Module Validation Program), a joint program run by the American National Institute of Standards and Technology (NIST) and the Canadian Communications Security Establishment (CSE).

References

  1. "Measurements table". bench.cr.yp.to.
  2. Tao, Xie; Liu, Fanbao; Feng, Dengguo (2013). Fast Collision Attack on MD5 (PDF). Cryptology ePrint Archive (Technical report). IACR.
  3. Stevens, Marc; Bursztein, Elie; Karpman, Pierre; Albertini, Ange; Markov, Yarik. The first collision for full SHA-1 (PDF) (Technical report). Google Research.
    • Marc Stevens; Elie Bursztein; Pierre Karpman; Ange Albertini; Yarik Markov; Alex Petit Bianco; Clement Baisse (February 23, 2017). "Announcing the first SHA1 collision". Google Security Blog.
  4. Without truncation, the full internal state of the hash function is known, regardless of collision resistance. If the output is truncated, the removed part of the state must be searched for and found before the hash function can be resumed, allowing the attack to proceed.
  5. "The Keccak sponge function family". Retrieved 2016-01-27.
Cryptographic hash functions and message authentication codes
Common functions
SHA-3 finalists
Other functions
Password hashing/
key stretching functions
General purpose
key derivation functions
MAC functions
Authenticated
encryption
modes
Attacks
Design
Standardization
Utilization
Category: