Misplaced Pages

Shape factor (image analysis and microscopy)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Shape factors are dimensionless quantities used in image analysis and microscopy that numerically describe the shape of a particle, independent of its size. Shape factors are calculated from measured dimensions, such as diameter, chord lengths, area, perimeter, centroid, moments, etc. The dimensions of the particles are usually measured from two-dimensional cross-sections or projections, as in a microscope field, but shape factors also apply to three-dimensional objects. The particles could be the grains in a metallurgical or ceramic microstructure, or the microorganisms in a culture, for example. The dimensionless quantities often represent the degree of deviation from an ideal shape, such as a circle, sphere or equilateral polyhedron. Shape factors are often normalized, that is, the value ranges from zero to one. A shape factor equal to one usually represents an ideal case or maximum symmetry, such as a circle, sphere, square or cube.

Aspect ratio

The most common shape factor is the aspect ratio, a function of the largest diameter and the smallest diameter orthogonal to it:

A R = d min d max {\displaystyle A_{R}={\frac {d_{\min }}{d_{\max }}}}

The normalized aspect ratio varies from approaching zero for a very elongated particle, such as a grain in a cold-worked metal, to near unity for an equiaxed grain. The reciprocal of the right side of the above equation is also used, such that the AR varies from one to approaching infinity.

Circularity

Another very common shape factor is the circularity (or isoperimetric quotient), a function of the perimeter P and the area A:

f circ = 4 π A P 2 {\displaystyle f_{\text{circ}}={\frac {4\pi A}{P^{2}}}}

The circularity of a circle is 1, and much less than one for a starfish footprint. The reciprocal of the circularity equation is also used, such that fcirc varies from one for a circle to infinity.

Elongation shape factor

The less-common elongation shape factor is defined as the square root of the ratio of the two second moments in of the particle around its principal axes.

f elong = i 2 i 1 {\displaystyle f_{\text{elong}}={\sqrt {\frac {i_{2}}{i_{1}}}}}

Compactness shape factor

The compactness shape factor is a function of the polar second moment in of a particle and a circle of equal area A.

f comp = A 2 2 π i 1 2 + i 2 2 {\displaystyle f_{\text{comp}}={\frac {A^{2}}{2\pi {\sqrt {{i_{1}}^{2}+{i_{2}}^{2}}}}}}

The fcomp of a circle is one, and much less than one for the cross-section of an I-beam.

Waviness shape factor

The waviness shape factor of the perimeter is a function of the convex portion Pcvx of the perimeter to the total.

f wav = P cvx P {\displaystyle f_{\text{wav}}={\frac {P_{\text{cvx}}}{P}}}

Some properties of metals and ceramics, such as fracture toughness, have been linked to grain shapes.

An application of shape factors

Greenland, the largest island in the world, has an area of 2,166,086 km; a coastline (perimeter) of 39,330 km; a north–south length of 2670 km; and an east–west length of 1290 km. The aspect ratio of Greenland is

A R = 1290 2670 = 0.483 {\displaystyle A_{R}={\frac {1290}{2670}}=0.483}

The circularity of Greenland is

f circ = 4 π ( 2166086 ) 39330 2 = 0.0176. {\displaystyle f_{\text{circ}}={\frac {4\pi (2166086)}{39330^{2}}}=0.0176.}

The aspect ratio is agreeable with an eyeball-estimate on a globe. Such an estimate on a typical flat map, using the Mercator projection, would be less accurate due to the distorted scale at high latitudes. The circularity is deceptively low, due to the fjords that give Greenland a very jagged coastline (see the coastline paradox). A low value of circularity does not necessarily indicate a lack of symmetry, and shape factors are not limited to microscopic objects.

References

  1. L. Wojnar & K.J. Kurzydłowski, et al., Practical Guide to Image Analysis, ASM International, 2000, p 157-160, ISBN 0-87170-688-1.
  2. ^ H.E. Exner & H.P. Hougardy, Quantitative Image Analysis of Microstructures, DGM Informationsgesellschaft mbH, 1988, p 33-39, ISBN 3-88355-132-5.
  3. P.F. Becher, et al., "Microstructural Design of Silicon Nitride with Improved Fracture Toughness: I, Effects of Grain Shape and Size," J. American Ceramic Soc., Vol 81, Issue 11, P 2821-2830, Nov 1998.
  4. T. Huang, et al., "Anisotropic Grain Growth and Microstructural Evolution of Dense Mullite above 1550°C," J. American Ceramic Soc., Vol 83, Issue 1, P 204-10, Jan 2000.

Further reading

  • J.C. Russ & R.T. Dehoff, Practical Stereology, 2nd Ed., Kluwer Academic, 2000.
  • E.E. Underwood, Quantitative Stereology, Addison-Wesley Publishing Co., 1970.
  • G.F. VanderVoort, Metallography: Principles and Practice, ASM International, 1984.
Categories: