Misplaced Pages

Skewed generalized t distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Family of continuous probability distributions
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (September 2015) (Learn how and when to remove this message)

In probability and statistics, the skewed generalized "t" distribution is a family of continuous probability distributions. The distribution was first introduced by Panayiotis Theodossiou in 1998. The distribution has since been used in different applications. There are different parameterizations for the skewed generalized t distribution.

Definition

Probability density function

f SGT ( x ; μ , σ , λ , p , q ) = p 2 v σ q 1 p B ( 1 p , q ) [ 1 + | x μ + m | p q ( v σ ) p ( 1 + λ sgn ( x μ + m ) ) p ] 1 p + q {\displaystyle f_{\text{SGT}}(x;\mu ,\sigma ,\lambda ,p,q)={\frac {p}{2v\sigma q^{\frac {1}{p}}B({\frac {1}{p}},q)\left^{{\frac {1}{p}}+q}}}}

where B {\displaystyle B} is the beta function, μ {\displaystyle \mu } is the location parameter, σ > 0 {\displaystyle \sigma >0} is the scale parameter, 1 < λ < 1 {\displaystyle -1<\lambda <1} is the skewness parameter, and p > 0 {\displaystyle p>0} and q > 0 {\displaystyle q>0} are the parameters that control the kurtosis. m {\displaystyle m} and v {\displaystyle v} are not parameters, but functions of the other parameters that are used here to scale or shift the distribution appropriately to match the various parameterizations of this distribution.

In the original parameterization of the skewed generalized t distribution,

m = λ v σ 2 q 1 p B ( 2 p , q 1 p ) B ( 1 p , q ) {\displaystyle m=\lambda v\sigma {\frac {2q^{\frac {1}{p}}B({\frac {2}{p}},q-{\frac {1}{p}})}{B({\frac {1}{p}},q)}}}

and

v = q 1 p ( 1 + 3 λ 2 ) B ( 3 p , q 2 p ) B ( 1 p , q ) 4 λ 2 B ( 2 p , q 1 p ) 2 B ( 1 p , q ) 2 {\displaystyle v={\frac {q^{-{\frac {1}{p}}}}{\sqrt {(1+3\lambda ^{2}){\frac {B({\frac {3}{p}},q-{\frac {2}{p}})}{B({\frac {1}{p}},q)}}-4\lambda ^{2}{\frac {B({\frac {2}{p}},q-{\frac {1}{p}})^{2}}{B({\frac {1}{p}},q)^{2}}}}}}} .

These values for m {\displaystyle m} and v {\displaystyle v} yield a distribution with mean of μ {\displaystyle \mu } if p q > 1 {\displaystyle pq>1} and a variance of σ 2 {\displaystyle \sigma ^{2}} if p q > 2 {\displaystyle pq>2} . In order for m {\displaystyle m} to take on this value however, it must be the case that p q > 1 {\displaystyle pq>1} . Similarly, for v {\displaystyle v} to equal the above value, p q > 2 {\displaystyle pq>2} .

The parameterization that yields the simplest functional form of the probability density function sets m = 0 {\displaystyle m=0} and v = 1 {\displaystyle v=1} . This gives a mean of

μ + 2 v σ λ q 1 p B ( 2 p , q 1 p ) B ( 1 p , q ) {\displaystyle \mu +{\frac {2v\sigma \lambda q^{\frac {1}{p}}B({\frac {2}{p}},q-{\frac {1}{p}})}{B({\frac {1}{p}},q)}}}

and a variance of

σ 2 q 2 p ( ( 1 + 3 λ 2 ) B ( 3 p , q 2 p ) B ( 1 p , q ) 4 λ 2 B ( 2 p , q 1 p ) 2 B ( 1 p , q ) 2 ) {\displaystyle \sigma ^{2}q^{\frac {2}{p}}((1+3\lambda ^{2}){\frac {B({\frac {3}{p}},q-{\frac {2}{p}})}{B({\frac {1}{p}},q)}}-4\lambda ^{2}{\frac {B({\frac {2}{p}},q-{\frac {1}{p}})^{2}}{B({\frac {1}{p}},q)^{2}}})}

The λ {\displaystyle \lambda } parameter controls the skewness of the distribution. To see this, let M {\displaystyle M} denote the mode of the distribution, and

M f SGT ( x ; μ , σ , λ , p , q ) d x = 1 λ 2 {\displaystyle \int _{-\infty }^{M}f_{\text{SGT}}(x;\mu ,\sigma ,\lambda ,p,q)\mathrm {d} x={\frac {1-\lambda }{2}}}

Since 1 < λ < 1 {\displaystyle -1<\lambda <1} , the probability left of the mode, and therefore right of the mode as well, can equal any value in (0,1) depending on the value of λ {\displaystyle \lambda } . Thus the skewed generalized t distribution can be highly skewed as well as symmetric. If 1 < λ < 0 {\displaystyle -1<\lambda <0} , then the distribution is negatively skewed. If 0 < λ < 1 {\displaystyle 0<\lambda <1} , then the distribution is positively skewed. If λ = 0 {\displaystyle \lambda =0} , then the distribution is symmetric.

Finally, p {\displaystyle p} and q {\displaystyle q} control the kurtosis of the distribution. As p {\displaystyle p} and q {\displaystyle q} get smaller, the kurtosis increases (i.e. becomes more leptokurtic). Large values of p {\displaystyle p} and q {\displaystyle q} yield a distribution that is more platykurtic.

Moments

Let X {\displaystyle X} be a random variable distributed with the skewed generalized t distribution. The h t h {\displaystyle h^{th}} moment (i.e. E [ ( X E ( X ) ) h ] {\displaystyle E} ), for p q > h {\displaystyle pq>h} , is: r = 0 h ( h r ) ( ( 1 + λ ) r + 1 + ( 1 ) r ( 1 λ ) r + 1 ) ( λ ) h r ( v σ ) h q h p B ( r + 1 p , q r p ) B ( 2 p , q 1 p ) h r 2 r h + 1 B ( 1 p , q ) h r + 1 {\displaystyle \sum _{r=0}^{h}{\binom {h}{r}}((1+\lambda )^{r+1}+(-1)^{r}(1-\lambda )^{r+1})(-\lambda )^{h-r}{\frac {(v\sigma )^{h}q^{\frac {h}{p}}B({\frac {r+1}{p}},q-{\frac {r}{p}})B({\frac {2}{p}},q-{\frac {1}{p}})^{h-r}}{2^{r-h+1}B({\frac {1}{p}},q)^{h-r+1}}}}

The mean, for p q > 1 {\displaystyle pq>1} , is:

μ + 2 v σ λ q 1 p B ( 2 p , q 1 p ) B ( 1 p , q ) m {\displaystyle \mu +{\frac {2v\sigma \lambda q^{\frac {1}{p}}B({\frac {2}{p}},q-{\frac {1}{p}})}{B({\frac {1}{p}},q)}}-m}

The variance (i.e. E [ ( X E ( X ) ) 2 ] {\displaystyle E} ), for p q > 2 {\displaystyle pq>2} , is:

( v σ ) 2 q 2 p ( ( 1 + 3 λ 2 ) B ( 3 p , q 2 p ) B ( 1 p , q ) 4 λ 2 B ( 2 p , q 1 p ) 2 B ( 1 p , q ) 2 ) {\displaystyle (v\sigma )^{2}q^{\frac {2}{p}}((1+3\lambda ^{2}){\frac {B({\frac {3}{p}},q-{\frac {2}{p}})}{B({\frac {1}{p}},q)}}-4\lambda ^{2}{\frac {B({\frac {2}{p}},q-{\frac {1}{p}})^{2}}{B({\frac {1}{p}},q)^{2}}})}

The skewness (i.e. E [ ( X E ( X ) ) 3 ] {\displaystyle E} ), for p q > 3 {\displaystyle pq>3} , is:

2 q 3 / p λ ( v σ ) 3 B ( 1 p , q ) 3 ( 8 λ 2 B ( 2 p , q 1 p ) 3 3 ( 1 + 3 λ 2 ) B ( 1 p , q ) {\displaystyle {\frac {2q^{3/p}\lambda (v\sigma )^{3}}{B({\frac {1}{p}},q)^{3}}}{\Bigg (}8\lambda ^{2}B({\frac {2}{p}},q-{\frac {1}{p}})^{3}-3(1+3\lambda ^{2})B({\frac {1}{p}},q)}
× B ( 2 p , q 1 p ) B ( 3 p , q 2 p ) + 2 ( 1 + λ 2 ) B ( 1 p , q ) 2 B ( 4 p , q 3 p ) ) {\displaystyle \times B({\frac {2}{p}},q-{\frac {1}{p}})B({\frac {3}{p}},q-{\frac {2}{p}})+2(1+\lambda ^{2})B({\frac {1}{p}},q)^{2}B({\frac {4}{p}},q-{\frac {3}{p}}){\Bigg )}}

The kurtosis (i.e. E [ ( X E ( X ) ) 4 ] {\displaystyle E} ), for p q > 4 {\displaystyle pq>4} , is:

q 4 / p ( v σ ) 4 B ( 1 p , q ) 4 ( 48 λ 4 B ( 2 p , q 1 p ) 4 + 24 λ 2 ( 1 + 3 λ 2 ) B ( 1 p , q ) B ( 2 p , q 1 p ) 2 {\displaystyle {\frac {q^{4/p}(v\sigma )^{4}}{B({\frac {1}{p}},q)^{4}}}{\Bigg (}-48\lambda ^{4}B({\frac {2}{p}},q-{\frac {1}{p}})^{4}+24\lambda ^{2}(1+3\lambda ^{2})B({\frac {1}{p}},q)B({\frac {2}{p}},q-{\frac {1}{p}})^{2}}
× B ( 3 p , q 2 p ) 32 λ 2 ( 1 + λ 2 ) B ( 1 p , q ) 2 B ( 2 p , q 1 p ) B ( 4 p , q 3 p ) {\displaystyle \times B({\frac {3}{p}},q-{\frac {2}{p}})-32\lambda ^{2}(1+\lambda ^{2})B({\frac {1}{p}},q)^{2}B({\frac {2}{p}},q-{\frac {1}{p}})B({\frac {4}{p}},q-{\frac {3}{p}})}
+ ( 1 + 10 λ 2 + 5 λ 4 ) B ( 1 p , q ) 3 B ( 5 p , q 4 p ) ) {\displaystyle +(1+10\lambda ^{2}+5\lambda ^{4})B({\frac {1}{p}},q)^{3}B({\frac {5}{p}},q-{\frac {4}{p}}){\Bigg )}}

Special Cases

Special and limiting cases of the skewed generalized t distribution include the skewed generalized error distribution, the generalized t distribution introduced by McDonald and Newey, the skewed t proposed by Hansen, the skewed Laplace distribution, the generalized error distribution (also known as the generalized normal distribution), a skewed normal distribution, the student t distribution, the skewed Cauchy distribution, the Laplace distribution, the uniform distribution, the normal distribution, and the Cauchy distribution. The graphic below, adapted from Hansen, McDonald, and Newey, shows which parameters should be set to obtain some of the different special values of the skewed generalized t distribution.

The skewed generalized t distribution tree

Skewed generalized error distribution

The Skewed Generalized Error Distribution (SGED) has the pdf:

lim q f SGT ( x ; μ , σ , λ , p , q ) {\displaystyle \lim _{q\to \infty }f_{\text{SGT}}(x;\mu ,\sigma ,\lambda ,p,q)}
= f SGED ( x ; μ , σ , λ , p ) = p 2 v σ Γ ( 1 p ) e ( | x μ + m | v σ [ 1 + λ sgn ( x μ + m ) ] ) p {\displaystyle =f_{\text{SGED}}(x;\mu ,\sigma ,\lambda ,p)={\frac {p}{2v\sigma \Gamma ({\frac {1}{p}})}}e^{-\left({\frac {|x-\mu +m|}{v\sigma }}\right)^{p}}}

where

m = λ v σ 2 2 p Γ ( 1 2 + 1 p ) π {\displaystyle m=\lambda v\sigma {\frac {2^{\frac {2}{p}}\Gamma ({\frac {1}{2}}+{\frac {1}{p}})}{\sqrt {\pi }}}}

gives a mean of μ {\displaystyle \mu } . Also

v = π Γ ( 1 p ) π ( 1 + 3 λ 2 ) Γ ( 3 p ) 16 1 p λ 2 Γ ( 1 2 + 1 p ) 2 Γ ( 1 p ) {\displaystyle v={\sqrt {\frac {\pi \Gamma ({\frac {1}{p}})}{\pi (1+3\lambda ^{2})\Gamma ({\frac {3}{p}})-16^{\frac {1}{p}}\lambda ^{2}\Gamma ({\frac {1}{2}}+{\frac {1}{p}})^{2}\Gamma ({\frac {1}{p}})}}}}

gives a variance of σ 2 {\displaystyle \sigma ^{2}} .

Generalized t-distribution

The generalized t-distribution (GT) has the pdf:

f SGT ( x ; μ , σ , λ = 0 , p , q ) {\displaystyle f_{\text{SGT}}(x;\mu ,\sigma ,\lambda {=}0,p,q)}
= f GT ( x ; μ , σ , p , q ) = p 2 v σ q 1 p B ( 1 p , q ) [ 1 + | x μ | p q ( v σ ) p ] 1 p + q {\displaystyle =f_{\text{GT}}(x;\mu ,\sigma ,p,q)={\frac {p}{2v\sigma q^{\frac {1}{p}}B({\frac {1}{p}},q)\left^{{\frac {1}{p}}+q}}}}

where

v = 1 q 1 p B ( 1 p , q ) B ( 3 p , q 2 p ) {\displaystyle v={\frac {1}{q^{\frac {1}{p}}}}{\sqrt {\frac {B({\frac {1}{p}},q)}{B({\frac {3}{p}},q-{\frac {2}{p}})}}}}

gives a variance of σ 2 {\displaystyle \sigma ^{2}} .

Skewed t-distribution

The skewed t-distribution (ST) has the pdf:

f SGT ( x ; μ , σ , λ , p = 2 , q ) {\displaystyle f_{\text{SGT}}(x;\mu ,\sigma ,\lambda ,p{=}2,q)}
= f ST ( x ; μ , σ , λ , q ) = Γ ( 1 2 + q ) v σ ( π q ) 1 2 Γ ( q ) [ 1 + | x μ + m | 2 q ( v σ ) 2 ( 1 + λ sgn ( x μ + m ) ) 2 ] 1 2 + q {\displaystyle =f_{\text{ST}}(x;\mu ,\sigma ,\lambda ,q)={\frac {\Gamma ({\frac {1}{2}}+q)}{v\sigma (\pi q)^{\frac {1}{2}}\Gamma (q)\left^{{\frac {1}{2}}+q}}}}

where

m = λ v σ 2 q 1 2 Γ ( q 1 2 ) π 1 2 Γ ( q ) {\displaystyle m=\lambda v\sigma {\frac {2q^{\frac {1}{2}}\Gamma (q-{\frac {1}{2}})}{\pi ^{\frac {1}{2}}\Gamma (q)}}}

gives a mean of μ {\displaystyle \mu } . Also

v = 1 q 1 2 ( 1 + 3 λ 2 ) 1 2 q 2 4 λ 2 π ( Γ ( q 1 2 ) Γ ( q ) ) 2 {\displaystyle v={\frac {1}{q^{\frac {1}{2}}{\sqrt {(1+3\lambda ^{2}){\frac {1}{2q-2}}-{\frac {4\lambda ^{2}}{\pi }}\left({\frac {\Gamma (q-{\frac {1}{2}})}{\Gamma (q)}}\right)^{2}}}}}}

gives a variance of σ 2 {\displaystyle \sigma ^{2}} .

Skewed Laplace distribution

The skewed Laplace distribution (SLaplace) has the pdf:

lim q f SGT ( x ; μ , σ , λ , p = 1 , q ) {\displaystyle \lim _{q\to \infty }f_{\text{SGT}}(x;\mu ,\sigma ,\lambda ,p{=}1,q)}
= f SLaplace ( x ; μ , σ , λ ) = 1 2 v σ e | x μ + m | v σ ( 1 + λ sgn ( x μ + m ) ) {\displaystyle =f_{\text{SLaplace}}(x;\mu ,\sigma ,\lambda )={\frac {1}{2v\sigma }}e^{-{\frac {|x-\mu +m|}{v\sigma (1+\lambda \operatorname {sgn}(x-\mu +m))}}}}

where

m = 2 v σ λ {\displaystyle m=2v\sigma \lambda }

gives a mean of μ {\displaystyle \mu } . Also

v = [ 2 ( 1 + λ 2 ) ] 1 2 {\displaystyle v=^{-{\frac {1}{2}}}}

gives a variance of σ 2 {\displaystyle \sigma ^{2}} .

Generalized error distribution

The generalized error distribution (GED, also known as the generalized normal distribution) has the pdf:

lim q f SGT ( x ; μ , σ , λ = 0 , p , q ) {\displaystyle \lim _{q\to \infty }f_{\text{SGT}}(x;\mu ,\sigma ,\lambda {=}0,p,q)}
= f GED ( x ; μ , σ , p ) = p 2 v σ Γ ( 1 p ) e ( | x μ | v σ ) p {\displaystyle =f_{\text{GED}}(x;\mu ,\sigma ,p)={\frac {p}{2v\sigma \Gamma ({\frac {1}{p}})}}e^{-\left({\frac {|x-\mu |}{v\sigma }}\right)^{p}}}

where

v = Γ ( 1 p ) Γ ( 3 p ) {\displaystyle v={\sqrt {\frac {\Gamma ({\frac {1}{p}})}{\Gamma ({\frac {3}{p}})}}}}

gives a variance of σ 2 {\displaystyle \sigma ^{2}} .

Skewed normal distribution

The skewed normal distribution (SNormal) has the pdf:

lim q f SGT ( x ; μ , σ , λ , p = 2 , q ) {\displaystyle \lim _{q\to \infty }f_{\text{SGT}}(x;\mu ,\sigma ,\lambda ,p{=}2,q)}
= f SNormal ( x ; μ , σ , λ ) = 1 v σ π e [ | x μ + m | v σ ( 1 + λ sgn ( x μ + m ) ) ] 2 {\displaystyle =f_{\text{SNormal}}(x;\mu ,\sigma ,\lambda )={\frac {1}{v\sigma {\sqrt {\pi }}}}e^{-\left^{2}}}

where

m = λ v σ 2 π {\displaystyle m=\lambda v\sigma {\frac {2}{\sqrt {\pi }}}}

gives a mean of μ {\displaystyle \mu } . Also

v = 2 π π 8 λ 2 + 3 π λ 2 {\displaystyle v={\sqrt {\frac {2\pi }{\pi -8\lambda ^{2}+3\pi \lambda ^{2}}}}}

gives a variance of σ 2 {\displaystyle \sigma ^{2}} .

The distribution should not be confused with the skew normal distribution or another asymmetric version. Indeed, the distribution here is a special case of a bi-Gaussian, whose left and right widths are proportional to 1 λ {\displaystyle 1-\lambda } and 1 + λ {\displaystyle 1+\lambda } .

Student's t-distribution

The Student's t-distribution (T) has the pdf:

f SGT ( x ; μ = 0 , σ = 1 , λ = 0 , p = 2 , q = d 2 ) {\displaystyle f_{\text{SGT}}(x;\mu {=}0,\sigma {=}1,\lambda {=}0,p{=}2,q{=}{\tfrac {d}{2}})}
= f T ( x ; d ) = Γ ( d + 1 2 ) ( π d ) 1 2 Γ ( d 2 ) ( 1 + x 2 d ) d + 1 2 {\displaystyle =f_{\text{T}}(x;d)={\frac {\Gamma ({\frac {d+1}{2}})}{(\pi d)^{\frac {1}{2}}\Gamma ({\frac {d}{2}})}}\left(1+{\frac {x^{2}}{d}}\right)^{-{\frac {d+1}{2}}}}

v = 2 {\displaystyle v={\sqrt {2}}} was substituted.

Skewed Cauchy distribution

The skewed cauchy distribution (SCauchy) has the pdf:

f SGT ( x ; μ , σ , λ , p = 2 , q = 1 2 ) {\displaystyle f_{\text{SGT}}(x;\mu ,\sigma ,\lambda ,p{=}2,q{=}{\tfrac {1}{2}})}
= f SCauchy ( x ; μ , σ , λ ) = 1 σ π [ 1 + | x μ | 2 σ 2 ( 1 + λ sgn ( x μ ) ) 2 ] {\displaystyle =f_{\text{SCauchy}}(x;\mu ,\sigma ,\lambda )={\frac {1}{\sigma \pi \left}}}

v = 2 {\displaystyle v={\sqrt {2}}} and m = 0 {\displaystyle m=0} was substituted.

The mean, variance, skewness, and kurtosis of the skewed Cauchy distribution are all undefined.

Laplace distribution

The Laplace distribution has the pdf:

lim q f SGT ( x ; μ , σ , λ = 0 , p = 1 , q ) {\displaystyle \lim _{q\to \infty }f_{\text{SGT}}(x;\mu ,\sigma ,\lambda {=}0,p{=}1,q)}
= f Laplace ( x ; μ , σ ) = 1 2 σ e | x μ | σ {\displaystyle =f_{\text{Laplace}}(x;\mu ,\sigma )={\frac {1}{2\sigma }}e^{-{\frac {|x-\mu |}{\sigma }}}}

v = 1 {\displaystyle v=1} was substituted.

Uniform Distribution

The uniform distribution has the pdf:

lim p f SGT ( x ; μ , σ , λ , p , q ) {\displaystyle \lim _{p\to \infty }f_{\text{SGT}}(x;\mu ,\sigma ,\lambda ,p,q)}
= f ( x ) = { 1 2 v σ | x μ | < v σ 0 o t h e r w i s e {\displaystyle =f(x)={\begin{cases}{\frac {1}{2v\sigma }}&|x-\mu |<v\sigma \\0&\mathrm {otherwise} \end{cases}}}

Thus the standard uniform parameterization is obtained if μ = a + b 2 {\displaystyle \mu ={\frac {a+b}{2}}} , v = 1 {\displaystyle v=1} , and σ = b a 2 {\displaystyle \sigma ={\frac {b-a}{2}}} .

Normal distribution

The normal distribution has the pdf:

lim q f SGT ( x ; μ , σ , λ = 0 , p = 2 , q ) {\displaystyle \lim _{q\to \infty }f_{\text{SGT}}(x;\mu ,\sigma ,\lambda {=}0,p{=}2,q)}
= f Normal ( x ; μ , σ ) = e ( | x μ | v σ ) 2 v σ π {\displaystyle =f_{\text{Normal}}(x;\mu ,\sigma )={\frac {e^{-\left({\frac {|x-\mu |}{v\sigma }}\right)^{2}}}{v\sigma {\sqrt {\pi }}}}}

where

v = 2 {\displaystyle v={\sqrt {2}}}

gives a variance of σ 2 {\displaystyle \sigma ^{2}} .

Cauchy Distribution

The Cauchy distribution has the pdf:

f SGT ( x ; μ , σ , λ = 0 , p = 2 , q = 1 2 ) {\displaystyle f_{\text{SGT}}(x;\mu ,\sigma ,\lambda {=}0,p{=}2,q{=}{\tfrac {1}{2}})}
= f Cauchy ( x ; μ , σ ) = 1 σ π [ 1 + ( x μ σ ) 2 ] {\displaystyle =f_{\text{Cauchy}}(x;\mu ,\sigma )={\frac {1}{\sigma \pi \left}}}

v = 2 {\displaystyle v={\sqrt {2}}} was substituted.

References

External links

Notes

  1. ^ Theodossiou, P (1998). "Financial Data and the Skewed Generalized T Distribution". Management Science. 44 (12–part–1): 1650–1661. doi:10.1287/mnsc.44.12.1650.
  2. ^ Hansen, C.; McDonald, J.; Newey, W. (2010). "Instrumental Variables Estimation with Flexible Distributions". Journal of Business and Economic Statistics. 28: 13–25. doi:10.1198/jbes.2009.06161. hdl:10419/79273. S2CID 11370711.
  3. Hansen, C., J. McDonald, and P. Theodossiou (2007) "Some Flexible Parametric Models for Partially Adaptive Estimators of Econometric Models" Economics: The Open-Access, Open-Assessment E-Journal
  4. McDonald, J.; Michelfelder, R.; Theodossiou, P. (2009). "Evaluation of Robust Regression Estimation Methods and Intercept Bias: A Capital Asset Pricing Model Application" (PDF). Multinational Finance Journal. 15 (3/4): 293–321. doi:10.17578/13-3/4-6. S2CID 15012865.
  5. ^ McDonald J., R. Michelfelder, and P. Theodossiou (2010) "Robust Estimation with Flexible Parametric Distributions: Estimation of Utility Stock Betas" Quantitative Finance 375-387.
  6. ^ McDonald, J.; Newey, W. (1998). "Partially Adaptive Estimation of Regression Models via the Generalized t Distribution". Econometric Theory. 4 (3): 428–457. doi:10.1017/S0266466600013384. S2CID 120305707.
  7. Savva C. and P. Theodossiou (2015) "Skewness and the Relation between Risk and Return" Management Science, forthcoming.
  8. Hansen, B (1994). "Autoregressive Conditional Density Estimation". International Economic Review. 35 (3): 705–730. doi:10.2307/2527081. JSTOR 2527081.
Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Statistics
Descriptive statistics
Continuous data
Center
Dispersion
Shape
Count data
Summary tables
Dependence
Graphics
Data collection
Study design
Survey methodology
Controlled experiments
Adaptive designs
Observational studies
Statistical inference
Statistical theory
Frequentist inference
Point estimation
Interval estimation
Testing hypotheses
Parametric tests
Specific tests
Goodness of fit
Rank statistics
Bayesian inference
Correlation
Regression analysis
Linear regression
Non-standard predictors
Generalized linear model
Partition of variance
Categorical / Multivariate / Time-series / Survival analysis
Categorical
Multivariate
Time-series
General
Specific tests
Time domain
Frequency domain
Survival
Survival function
Hazard function
Test
Applications
Biostatistics
Engineering statistics
Social statistics
Spatial statistics
Categories: