Misplaced Pages

Samarium(II) iodide

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from SmI2)
Samarium(II) iodide
Ball-and-stick model of a samarium(II) iodide-THF complex
Names
IUPAC name samarium(II) iodide
Other names samarium diiodide
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/2HI.Sm/h2*1H;/q;;+2/p-2Key: UAWABSHMGXMCRK-UHFFFAOYSA-L
  • InChI=1/2HI.Sm/h2*1H;/q;;+2/p-2Key: UAWABSHMGXMCRK-NUQVWONBAD
SMILES
  • II
Properties
Chemical formula SmI2
Molar mass 404.16 g/mol
Appearance green solid
Melting point 520 °C (968 °F; 793 K)
Hazards
Flash point Non-flammable
Related compounds
Other anions Samarium(II) chloride
Samarium(II) bromide
Other cations Samarium(III) iodide
Europium(II) iodide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). checkverify (what is  ?) Infobox references
Chemical compound
Samarium(II) iodide in an ampule
Samarium(II) iodide

Samarium(II) iodide is an inorganic compound with the formula SmI2. When employed as a solution for organic synthesis, it is known as Kagan's reagent. SmI2 is a green solid and forms a dark blue solution in THF. It is a strong one-electron reducing agent that is used in organic synthesis.

Structure

In solid samarium(II) iodide, the metal centers are seven-coordinate with a face-capped octahedral geometry.

Structure of the samarium(II) iodide-tetrahydrofuran complex

In its ether adducts, samarium remains heptacoordinate with five ether and two terminal iodide ligands.

Preparation

Samarium iodide is easily prepared in nearly quantitative yields from samarium metal and either diiodomethane or 1,2-diiodoethane. When prepared in this way, its solutions is most often used without purification of the inorganic reagent.

Sm + ICH 2 I THF SmI 2 + 0.5 H 2 C = CH 2 Sm + I ( CH 2 ) 2 I THF SmI 2 + H 2 C = CH 2 {\displaystyle {\begin{array}{cl}{}\\{\ce {{Sm}+ ICH2I -> SmI2}}+0.5{\ce {H2C=CH2}}\\{\ce {{Sm}+ I(CH2)2I -> {SmI2}+ H2C=CH2}}\\{}\end{array}}} ()

Solid, solvent-free SmI2 forms by high temperature decomposition of samarium(III) iodide (SmI3).

Reactions

Samarium(II) iodide is a powerful reducing agent – for example it rapidly reduces water to hydrogen. It is available commercially as a dark blue 0.1 M solution in THF. Although used typically in superstoichiometric amounts, catalytic applications have been described.

Organic chemistry

Main article: Reductions with samarium(II) iodide

Samarium(II) iodide is a reagent for carbon-carbon bond formation, for example in a Barbier reaction (similar to the Grignard reaction) between a ketone and an alkyl iodide to form a tertiary alcohol:

RI + RCOR → RRC(OH)R
Barbier reaction using SmI2

Typical reaction conditions use SmI2 in THF in the presence of catalytic NiI2.

Esters react similarly (adding two R groups), but aldehydes give by-products. The reaction is convenient in that it is often very rapid (5 minutes or less in the cold). Although samarium(II) iodide is considered a powerful single-electron reducing agent, it does display remarkable chemoselectivity among functional groups. For example, sulfones and sulfoxides can be reduced to the corresponding sulfide in the presence of a variety of carbonyl-containing functionalities (such as esters, ketones, amides, aldehydes, etc.). This is presumably due to the considerably slower reaction with carbonyls as compared to sulfones and sulfoxides. Furthermore, hydrodehalogenation of halogenated hydrocarbons to the corresponding hydrocarbon compound can be achieved using samarium(II) iodide. Also, it can be monitored by the color change that occurs as the dark blue color of SmI2 in THF discharges to a light yellow once the reaction has occurred. The picture shows the dark colour disappearing immediately upon contact with the Barbier reaction mixture.

Work-up is with dilute hydrochloric acid, and the samarium is removed as aqueous Sm.

Carbonyl compounds can also be coupled with simple alkenes to form five, six or eight membered rings.

Tosyl groups can be removed from N-tosylamides almost instantaneously, using SmI2 in conjunction with distilled water and an amine base. The reaction is even effective for deprotection of sensitive substrates such as aziridines:

Removal of a tosyl group from an N-tosylamide using SmI2

In the Markó-Lam deoxygenation, an alcohol could be almost instantaneously deoxygenated by reducing their toluate ester in presence of SmI2.

Markó-Lam deoxygenation using SmI2

SmI2 can also be used in the transannulation of bicyclic molecules. An example is the SmI2 induced ketone - alkene cyclization of 5-methylenecyclooctanone which proceeds through a ketyl intermediate:

Ketone olefin cyclization

The applications of SmI2 have been reviewed. The book Organic Synthesis Using Samarium Diiodide, published in 2009, gives a detailed overview of reactions mediated by SmI2.

References

  1. https://www.sigmaaldrich.com/GB/en/sds/aldrich/347116?userType=anonymous
  2. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  3. William J. Evans; Tammy S. Gummersheimer & Joseph W. Ziller (1995). "Coordination Chemistry of Samarium Diiodide with Ethers Including the Crystal Structure of Tetrahydrofuran-Solvated Samarium Diiodide, SmI2(THF)5". J. Am. Chem. Soc. 117 (35): 8999–9002. doi:10.1021/ja00140a016.
  4. P. Girard, J. L. Namy and H. B. Kagan (1980). "Divalent Lanthanide Derivatives in Organic Synthesis. 1. Mild Preparation of SmI2 and YbI2 and Their Use as Reducing or Coupling Agents". J. Am. Chem. Soc. 102 (8): 2693–2698. doi:10.1021/ja00528a029.
  5. G. Jantsch, N. Skalla: "Zur Kenntnis der Halogenide der seltenen Erden. IV. – Über Samarium(II)jodid und den thermischen Abbau des Samarium(III)jodids", Zeitschrift für Allgemeine und Anorganische Chemie, 1930, 193, 391–405; doi:10.1002/zaac.19301930132.
  6. G. Jantsch: "Thermischer Abbau von seltenen Erd(III)halogeniden", Die Naturwissenschaften, 1930, 18 (7), 155–155; doi:10.1007/BF01501667.
  7. Gmelins Handbuch der anorganischen Chemie, System Nr. 39, Band C 6, p. 192–194.
  8. Huang, Huan-Ming; McDouall, Joseph J. W.; Procter, David J. (2019). "SmI2-catalysed cyclization cascades by radical relay". Nature Catalysis. 2 (3): 211–218. doi:10.1038/s41929-018-0219-x. S2CID 104423773.
  9. Machrouhi, Fouzia; Hamann, Béatrice; Namy, Jean-Louis; Kagan, Henri B. (1996). "Improved Reactivity of Diiodosamarium by Catalysis with Transition Metal Salts". Synlett. 1996 (7): 633–634. doi:10.1055/s-1996-5547. S2CID 196761752.
  10. Molander, G. A.; McKiie, J. A. (1992). "Samarium(II) iodide-induced reductive cyclization of unactivated olefinic ketones. Sequential radical cyclization/intermolecular nucleophilic addition and substitution reactions". J. Org. Chem. 57 (11): 3132–3139. doi:10.1021/jo00037a033.
  11. Ankner, Tobias; Göran Hilmersson (2009). "Instantaneous Deprotection of Tosylamides and Esters with SmI2/Amine/Water". Organic Letters. 11 (3). American Chemical Society: 503–506. doi:10.1021/ol802243d. PMID 19123840.
  12. Patrick G. Steel (2001). "Recent developments in lanthanide mediated organic synthesis". J. Chem. Soc., Perkin Trans. 1 (21): 2727–2751. doi:10.1039/a908189e.
  13. Molander, G. A.; Harris, C. R. (1996). "Sequencing Reactions with Samarium(II) Iodide". Chem. Rev. 96 (1): 307–338. doi:10.1021/cr950019y. PMID 11848755.
  14. K. C. Nicolaou; Shelby P. Ellery; Jason S. Chen (2009). "Samarium Diiodide Mediated Reactions in Total Synthesis". Angew. Chem. Int. Ed. 48 (39): 7140–7165. doi:10.1002/anie.200902151. PMC 2771673. PMID 19714695.
  15. Procter, David J.; Flowers,II, Robert A.; Skydstrup, Troels (2009). Organic Synthesis Using Samarium Diiodide. Royal Society of Chemistry. ISBN 978-1-84755-110-8.
Samarium compounds
Samarium(II)
Samarium(III)
Organosamarium(III)
Salts and covalent derivatives of the iodide ion
HI
+H
He
LiI BeI2 BI3
+BO3
CI4
+C
NI3
NH4I
+N
I2O4
I2O5
I2O6
I4O9
IF
IF3
IF5
IF7
Ne
NaI MgI2 AlI
AlI3
SiI4 PI3
P2I4
+P
PI5
S2I2 ICl
ICl3
Ar
KI CaI2 ScI3 TiI2
TiI3
TiI4
VI2
VI3
CrI2
CrI3
CrI4
MnI2 FeI2
FeI3
CoI2 NiI2
-Ni
CuI ZnI2 GaI
GaI3
GeI2
GeI4
+Ge
AsI3
As2I4
+As
Se IBr
IBr3
Kr
RbI
RbI3
SrI2 YI3 ZrI2
ZrI3
ZrI4
NbI4
NbI5
MoI2
MoI3
TcI3 RuI3 RhI3 PdI2 AgI CdI2 InI
InI3
SnI2
SnI4
SbI3
+Sb
TeI4
+Te
I
I
3
Xe
CsI
CsI3
BaI2   LuI3 HfI3
HfI4
TaI4
TaI5
WI2
WI3
WI4
ReI3
ReI
4
OsI
OsI2
OsI3
IrI3
IrI
4
PtI2
PtI4
AuI
AuI3
Hg2I2
HgI2
TlI
TlI3
PbI2 BiI3 PoI2
PoI4
AtI Rn
Fr RaI2   Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
LaI2
LaI3
CeI2
CeI3
PrI2
PrI3
NdI2
NdI3
PmI3 SmI2
SmI3
EuI2
EuI3
GdI2
GdI3
TbI3 DyI2
DyI
3
HoI3 ErI3 TmI2
TmI3
YbI2
YbI3
AcI3 ThI2
ThI3
ThI4
PaI4
PaI5
UI3
UI4
NpI3 PuI3 AmI2
AmI3
CmI3 BkI
3
CfI
2

CfI
3
EsI2
EsI3
Fm Md No
Lanthanide salts of halides
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
+4 CeF4 PrF4 NdF4 TbF4 DyF4
+3 LaF3
LaCl3
LaBr3
LaI3
CeF3
CeCl3
CeBr3
CeI3
PrF3
PrCl3
PrBr3
PrI3
NdF3
NdCl3
NdBr3
NdI3
PmF3
PmCl3
PmBr3
PmI3
SmF3
SmCl3
SmBr3
SmI3
EuF3
EuCl3
EuBr3
EuI3
GdF3
GdCl3
GdBr3
GdI3
TbF3
TbCl3
TbBr3
TbI3
DyF3
DyCl3
DyBr3
DyI3
HoF3
HoCl3
HoBr3
HoI3
ErF3
ErCl3
ErBr3
ErI3
TmF3
TmCl3
TmBr3
TmI3
YbF3
YbCl3
YbBr3
YbI3
LuF3
LuCl3
LuBr3
LuI3
+2 LaI2 CeI2 PrI2 NdF2
NdCl2
NdBr2
NdI2
SmF2
SmCl2
SmBr2
SmI2
EuF2
EuCl2
EuBr2
EuI2
GdI2 DyF2
DyCl2
DyBr2
DyI2
TmF2
TmCl2
TmBr2
TmI2
YbF2
YbCl2
YbBr2
YbI2
Categories: