This article may require cleanup to meet Misplaced Pages's quality standards. The specific problem is: The chembox and Wikidata item designate the (15R)-stereoisomer, but most sources use "stemmadenine" to refer to the (15S)-stereoisomer. Please help improve this article if you can. (May 2023) (Learn how and when to remove this message) |
Names | |
---|---|
IUPAC name Methyl (19E)-17-hydroxy-2,7,19,20-tetradehydro-3,7-seco-15β-curan-16-carboxylate | |
Systematic IUPAC name Methyl (5E,6R,7S)-5-ethylidene-7-(hydroxymethyl)-1,4,5,6,7,8-hexahydro-2H-3,6-ethanoazoninoindole-7-carboxylate | |
Identifiers | |
CAS Number | |
3D model (JSmol) | |
ChEBI | |
ChEMBL | |
ChemSpider | |
KEGG | |
PubChem CID | |
UNII | |
InChI
| |
SMILES
| |
Properties | |
Chemical formula | C21H26N2O3 |
Molar mass | 354.450 g·mol |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references |
Stemmadenine is a terpene indole alkaloid. Stemmadenine is believed to be formed from preakuammicine by a carbon-carbon bond cleavage. Cleavage of a second carbon-carbon bond is thought to form dehydrosecodine. The enzymes forming stemmadenine and using it as a substrate remain unknown to date. It is thought to be intermediate compound in many different biosynthetic pathways such as in Aspidosperma species. Many alkaloids are proposed to be produced through intermediate stemmadenine. Some of them are:
- Catharanthine and Tabersonine in Catharanthus roseus
- Subincanadines D-F in Aspidosperma subincanum
It is also present as product in plant like in Tabernaemontana dichotoma seeds.
Pharmacology
It has hypotensive and weak muscle relaxant properties.
See also
References
- Scott AI, Qureshi AA (1969). "Biogenesis of Strychnos, Aspidosperma, and Iboga alkaloids. Structure and reactions of preakuammicine". Journal of the American Chemical Society. 91 (21): 5874–6. doi:10.1021/ja01049a032. PMID 5812148.
- ^ Qu Y, Easson ME, Simionescu R, Hajicek J, Thamm AM, Salim V, De Luca V (March 2018). "Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19E-geissoschizine". Proceedings of the National Academy of Sciences of the United States of America. 115 (12): 3180–3185. Bibcode:2018PNAS..115.3180Q. doi:10.1073/pnas.1719979115. PMC 5866588. PMID 29511102.
- ^ Kalshetti MG, Argade NP (2020). "The indole-based subincanadine alkaloids and their biogenetic congeners". The Alkaloids. Chemistry and Biology. 83: 187–223. doi:10.1016/bs.alkal.2019.12.001. ISBN 9780128209813. PMID 32098650. S2CID 211524741.
- ^ El-Sayed M, Choi YH, Frédérich M, Roytrakul S, Verpoorte R (May 2004). "Alkaloid accumulation in Catharanthus roseus cell suspension cultures fed with stemmadenine". Biotechnology Letters. 26 (10): 793–8. doi:10.1023/b:bile.0000025879.53632.f2. PMID 15269549. S2CID 22411370.
- de Almeida VL, Silva CG, Silva AF, Campana PR, Foubert K, Lopes JC, Pieters L (March 2019). "Aspidosperma species: A review of their chemistry and biological activities". Journal of Ethnopharmacology. 231: 125–140. doi:10.1016/j.jep.2018.10.039. hdl:10067/1556490151162165141. PMID 30395977. S2CID 53223901.
- ^ Perera P, Kanjanapothy D, Sandberg F, Verpoorte R (May 1985). "Muscle relaxant activity and hypotensive activity of some Tabernaemontana alkaloids". Journal of Ethnopharmacology. 13 (2): 165–73. doi:10.1016/0378-8741(85)90004-2. PMID 4021514.
This article about an alkaloid is a stub. You can help Misplaced Pages by expanding it. |