Misplaced Pages

Strömgren integral

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Strömgren function) Operation in mathematical calculus

In mathematics and astrophysics, the Strömgren integral, introduced by Bengt Strömgren (1932, p.123) while computing the Rosseland mean opacity, is the integral:

15 4 π 4 0 x t 7 e 2 t ( e t 1 ) 3 d t . {\displaystyle {\frac {15}{4\pi ^{4}}}\int _{0}^{x}{\frac {t^{7}e^{2t}}{(e^{t}-1)^{3}}}\,dt.}

Cox (1964) discussed applications of the Strömgren integral in astrophysics, and MacLeod (1996) discussed how to compute it.

References

  • Cox, A. N. (1964), "Stellar absorption coefficients and opacities", in Adler, Lawrence Hugh; McLaughlin, Dean Benjamin (eds.), Stellar Structure, Stars and Stellar Systems: Compendium of Astronomy and Astrophysics, vol. VIII, Chicago, Ill: University of Chicago Press, p. 195, ISBN 978-0-226-45969-1
  • MacLeod, Allan J. (1996), "Algorithm 757: MISCFUN, a software package to compute uncommon special functions", ACM Transactions on Mathematical Software, 22 (3), NY, USA: ACM New York: 288–301, doi:10.1145/232826.232846
  • Strömgren, B. (1932), "The opacity of stellar matter and the hydrogen content of the stars", Zeitschrift für Astrophysik, 4: 118–152, Bibcode:1932ZA......4..118S
  • Strömgren, B. (1933), "On the Interpretation of the Hertzsprung-Russell-Diagram", Zeitschrift für Astrophysik, 7: 222, Bibcode:1933ZA......7..222S

External links

Categories: