Misplaced Pages

Suspension (dynamical systems)

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Suspension is a construction passing from a map to a flow. Namely, let X {\displaystyle X} be a metric space, f : X X {\displaystyle f:X\to X} be a continuous map and r : X R + {\displaystyle r:X\to \mathbb {R} ^{+}} be a function (roof function or ceiling function) bounded away from 0. Consider the quotient space:

X r = { ( x , t ) : 0 t r ( x ) , x X } / ( x , r ( x ) ) ( f ( x ) , 0 ) . {\displaystyle X_{r}=\{(x,t):0\leq t\leq r(x),x\in X\}/(x,r(x))\sim (f(x),0).}

The suspension of ( X , f ) {\displaystyle (X,f)} with roof function r {\displaystyle r} is the semiflow f t : X r X r {\displaystyle f_{t}:X_{r}\to X_{r}} induced by the time translation T t : X × R X × R , ( x , s ) ( x , s + t ) {\displaystyle T_{t}:X\times \mathbb {R} \to X\times \mathbb {R} ,(x,s)\mapsto (x,s+t)} .

If r ( x ) 1 {\displaystyle r(x)\equiv 1} , then the quotient space is also called the mapping torus of ( X , f ) {\displaystyle (X,f)} .

References

  1. M. Brin and G. Stuck, Introduction to Dynamical Systems, Cambridge University Press, 2002.
Category: