Misplaced Pages

Tannery's theorem

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Mathematical analysis theorem

In mathematical analysis, Tannery's theorem gives sufficient conditions for the interchanging of the limit and infinite summation operations. It is named after Jules Tannery.

Statement

Let S n = k = 0 a k ( n ) {\displaystyle S_{n}=\sum _{k=0}^{\infty }a_{k}(n)} and suppose that lim n a k ( n ) = b k {\displaystyle \lim _{n\to \infty }a_{k}(n)=b_{k}} . If | a k ( n ) | M k {\displaystyle |a_{k}(n)|\leq M_{k}} and k = 0 M k < {\displaystyle \sum _{k=0}^{\infty }M_{k}<\infty } , then lim n S n = k = 0 b k {\displaystyle \lim _{n\to \infty }S_{n}=\sum _{k=0}^{\infty }b_{k}} .

Proofs

Tannery's theorem follows directly from Lebesgue's dominated convergence theorem applied to the sequence space 1 {\displaystyle \ell ^{1}} .

An elementary proof can also be given.

Example

Tannery's theorem can be used to prove that the binomial limit and the infinite series characterizations of the exponential e x {\displaystyle e^{x}} are equivalent. Note that

lim n ( 1 + x n ) n = lim n k = 0 n ( n k ) x k n k . {\displaystyle \lim _{n\to \infty }\left(1+{\frac {x}{n}}\right)^{n}=\lim _{n\to \infty }\sum _{k=0}^{n}{n \choose k}{\frac {x^{k}}{n^{k}}}.}

Define a k ( n ) = ( n k ) x k n k {\displaystyle a_{k}(n)={n \choose k}{\frac {x^{k}}{n^{k}}}} . We have that | a k ( n ) | | x | k k ! {\displaystyle |a_{k}(n)|\leq {\frac {|x|^{k}}{k!}}} and that k = 0 | x | k k ! = e | x | < {\displaystyle \sum _{k=0}^{\infty }{\frac {|x|^{k}}{k!}}=e^{|x|}<\infty } , so Tannery's theorem can be applied and

lim n k = 0 ( n k ) x k n k = k = 0 lim n ( n k ) x k n k = k = 0 x k k ! = e x . {\displaystyle \lim _{n\to \infty }\sum _{k=0}^{\infty }{n \choose k}{\frac {x^{k}}{n^{k}}}=\sum _{k=0}^{\infty }\lim _{n\to \infty }{n \choose k}{\frac {x^{k}}{n^{k}}}=\sum _{k=0}^{\infty }{\frac {x^{k}}{k!}}=e^{x}.}

References

  1. Loya, Paul (2018). Amazing and Aesthetic Aspects of Analysis. Springer. ISBN 9781493967957.
  2. Ismail, Mourad E. H.; Koelink, Erik, eds. (2005). Theory and Applications of Special Functions: A Volume Dedicated to Mizan Rahman. New York: Springer. p. 448. ISBN 9780387242330.
  3. ^ Hofbauer, Josef (2002). "A Simple Proof of 1 + 1 / 2 2 + 1 / 3 2 + = π 2 6 {\displaystyle 1+1/2^{2}+1/3^{2}+\cdots ={\frac {\pi ^{2}}{6}}} and Related Identities". The American Mathematical Monthly. 109 (2): 196–200. doi:10.2307/2695334. JSTOR 2695334.
Categories: