In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite.
A simulation-based alternative to this approximation is the application of Monte Carlo simulations.
First moment
Given and , the mean and the variance of , respectively, a Taylor expansion of the expected value of can be found via
Since the second term vanishes. Also, is . Therefore,
- .
It is possible to generalize this to functions of more than one variable using multivariate Taylor expansions. For example,
Second moment
Similarly,
The above is obtained using a second order approximation, following the method used in estimating the first moment. It will be a poor approximation in cases where is highly non-linear. This is a special case of the delta method.
Indeed, we take .
With , we get . The variance is then computed using the formula
.
An example is,
The second order approximation, when X follows a normal distribution, is:
First product moment
To find a second-order approximation for the covariance of functions of two random variables (with the same function applied to both), one can proceed as follows. First, note that . Since a second-order expansion for has already been derived above, it only remains to find . Treating as a two-variable function, the second-order Taylor expansion is as follows:
Taking expectation of the above and simplifying—making use of the identities and —leads to . Hence,
Random vectors
If X is a random vector, the approximations for the mean and variance of are given by
Here and denote the gradient and the Hessian matrix respectively, and is the covariance matrix of X.
See also
Notes
- ^ Haym Benaroya, Seon Mi Han, and Mark Nagurka. Probability Models in Engineering and Science. CRC Press, 2005, p166.
- ^ van Kempen, G.m.p.; van Vliet, L.j. (1 April 2000). "Mean and Variance of Ratio Estimators Used in Fluorescence Ratio Imaging". Cytometry. 39 (4): 300–305. doi:10.1002/(SICI)1097-0320(20000401)39:4<300::AID-CYTO8>3.0.CO;2-O. Retrieved 2024-08-14.
- Hendeby, Gustaf; Gustafsson, Fredrik. "ON NONLINEAR TRANSFORMATIONS OF GAUSSIAN DISTRIBUTIONS" (PDF). Retrieved 5 October 2017.
- Rego, Bruno V.; Weiss, Dar; Bersi, Matthew R.; Humphrey, Jay D. (14 December 2021). "Uncertainty quantification in subject‐specific estimation of local vessel mechanical properties". International Journal for Numerical Methods in Biomedical Engineering. 37 (12): e3535. doi:10.1002/cnm.3535. ISSN 2040-7939. PMC 9019846. PMID 34605615.
Further reading
Categories: