Misplaced Pages

Tenomodulin

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Protein-coding gene in the species Homo sapiens
TNMD
Identifiers
AliasesTNMD, BRICD4, CHM1L, TEM, tenomodulin
External IDsOMIM: 300459; MGI: 1929885; HomoloGene: 11152; GeneCards: TNMD; OMA:TNMD - orthologs
Gene location (Human)
X chromosome (human)
Chr.X chromosome (human)
X chromosome (human)Genomic location for TNMDGenomic location for TNMD
BandXq22.1Start100,584,936 bp
End100,599,885 bp
Gene location (Mouse)
X chromosome (mouse)
Chr.X chromosome (mouse)
X chromosome (mouse)Genomic location for TNMDGenomic location for TNMD
BandX|X E3Start132,751,729 bp
End132,766,326 bp
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • Achilles tendon

  • synovial joint

  • cartilage tissue

  • adipose tissue

  • subcutaneous adipose tissue

  • hair follicle

  • skin of hip

  • abdominal fat

  • lactiferous gland

  • synovial membrane
Top expressed in
  • calvaria

  • soleus muscle

  • ankle

  • body of femur

  • skin of external ear

  • sternum

  • trachea

  • medial head of gastrocnemius muscle

  • temporal muscle

  • triceps brachii muscle
More reference expression data
BioGPS
More reference expression data
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

64102

64103

Ensembl

ENSG00000000005

ENSMUSG00000031250

UniProt

Q9H2S6

Q9EP64

RefSeq (mRNA)

NM_022144

NM_022322

RefSeq (protein)

NP_071427

NP_071717

Location (UCSC)Chr X: 100.58 – 100.6 MbChr X: 132.75 – 132.77 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

Tenomodulin, also referred to as tendin, myodulin, Tnmd, or TeM, is a protein encoded by the TNMD (Tnmd) gene and was discovered independently by Brandau and Shukunami in 2001 as a gene sharing high similarity with the already known chondromodulin-1 (Chm1). It is a tendon-specific gene marker known to be important for tendon maturation with key implications for the residing tendon stem/progenitor cells (TSPCs) as well as for the regulation of endothelial cell migration in chordae tendineae cordis in the heart and in experimental tumour models. It is highly expressed in tendons, explaining the rationale behind its name and the establishment as being marker gene for tendinous and ligamentous lineages.

Gene and protein structure

TNMD belongs to the new family of type II transmembrane glycoproteins. The gene is localized on the X chromosome and accounts for an approximately 1.4 kb transcript and a predicted protein consisting of 317 amino acids. The gene is composed of seven exons. The second exon encodes the transmembrane domain (amino acid position 31-49) and no signal peptide. TNMD contains a putative protease recognition sequence (Arg-Xxx-Xxx-Arg) identified at the position 233-236. Unlike chondromodulin-1, TNMD does not have a processing signal for furin protease. The extracellular part, prior the putative cleavage site, contains a BRICHOS extracellular domain found also in several other unrelated proteins. This domain consists of a homologous sequence of approximately 100 amino acids containing a pair of conserved cysteine residues. It has been suggested that BRICHOS participates in the protein post-translational processing, however the exact function remains unclear. TNMD contains two N-glycosylation sites at position 94 and 180. Protein analyses in eye and periodontal ligament revealed full length TNMD protein as a double band of 40 and 45 kDa. It has been experimentally proven that the 45 kDa band corresponds to glycosylated TNMD, while 40 kDa band is non-glycosylated TNMD. The last exon of TNMD gene encodes the conserved C-terminal cysteine-rich domain, which makes up the part of the protein sharing highest resemblance to chondromodulin-I (77% similarity/66% identity). This domain contains C-terminal hydrophobic tail with eight Cys residues forming four disulphide-bridges, which are well conserved across vertebrate species. A smaller cyclic structure forming by single Cys280-Cys292 disulphide bridge in TNMD has been shown to exert an anti-angiogenic function, while the other three disulphide-bridges are speculated to hold this cyclic structure and C-terminal hydrophobic tail separated from each other to avoid the formation of intramolecular aggregates. In certain tendon tissues such as Achilles tendon and chordae tendineae cordis, 16 kDa cleaved C-terminal part of TNMD was detected in the collagenous extracellular matrix.

Expression pattern

TNMD is highly expressed on messenger and protein levels in tendons and ligaments, but has also been found in other tissues.

- In tendon development first signals are detectable as early as E9.5, but upregulated from E14.5 onwards, marking the differentiated stage of tendon progenitors.

- Mouse periodontal ligaments demonstrated tenomodulin protein expression at 3 and 4 weeks postnatal, a time period corresponding to molar eruptive and post-eruptive phases when the teeth become functional.

- Other tendinous tissues known to express Tnmd are the diaphragm and chordae tendineae cordis.

- Masseter muscle is compartmentalized by a laminar structure, which was shown to elevate Tnmd mRNA in mouse embryos between E12.5 to E17.5, which further decreased after birth. The epimysium of skeletal muscle is also TNMD -positive.

- Tnmd mRNA was detected in eyes, more specifically in the sclerocornea, tendon of the extraocular muscle and the retinal ganglion cell layer, lens fibre cells, inner nuclear layer cells and pigment epithelium.

- Tnmd mRNA was detected in mouse skin at E15.5 and in human subcutaneous adipose tissue and adipocytes.

- In situ hybridization revealed Tnmd expression in various parts of the adult mouse brain such as the dentate gyrus, CA regions of the hippocampus, neurons in the cerebral nuclei, cerebellum, Purkinje cells and neuronal cells in the cerebellar nucleus.

- Rat mandibular condylar cartilage is positive for Tnmd mRNA at 1 week and is downregulated after 5 weeks.

Putative signalling pathway

The putative signalling pathway of TNMD is largely unknown due to unidentified direct binding partners. Many knockout mouse models with tendon phenotypes have helped in understanding which upstream factors or pathways affect Tnmd expression. Similarly, the generation of Tnmd knockout mouse model allowed the suggestion of possible downstream effectors. Most of the below studies show correlations between Tnmd expression or function to other genes and not a direct link in a common signalling cascade. Regarding upstream regulators of Tnmd expression the description of the scleraxis (Scx) knockout mouse line suggested that Scx can directly drive Tnmd transcription, because Scx deletion led to complete elimination of Tnmd expression. Overexpression of scleraxis in cultured tenocytes or in mesenchymal stem cells significantly upregulated Tnmd expression. The deletion of myostatin in mice resulted in a parallel decrease in Scx and Tnmd mRNA levels, while myostatin stimulation of fibroblasts led to their upregulation, suggesting myostatin as an upstream factor in the Tnmd pathway. Egr1/2 transcription factors can induce Scx and collagen I gene expression, hence it would be interesting to investigate if Egr1 or 2 also can affect Tnmd expression. The absence of the Mohawk (Mkx) gene led to significantly lower Tnmd expression as well as collagen I and fibromodulin. A significant loss of Tnmd was noticeable in Mkx knockouts at E16.5, while Scx expression was unchanged , suggesting that Mkx can also directly affect Tnmd expression. Activation of the Wnt/β-catenin signalling pathway in bone marrow-derived stem cells resulted in Tnmd upregulation. Scx and Mkx expression were unaffected, suggesting the Wnt/ β-catenin signalling works independent from these transcription factors. Regarding downstream factors, the Tnmd knockout mouse model suggested correlation to collagen I based on the observed abnormal collagen fibrillogenesis resulting in pathologically thicker fibres. The lower cellular density and proliferation in the mutant tendons, as well as the reduced self-renewal and earlier senescence of Tnmd-deficient tendon stem/progenitor cells was coupled with downregulation of the proliferative marker Cyclin D1 and upregulation of the senescent marker p53. A study analysing ruptures of human chordae tendineae cordis revealed loss of Tnmd expression in the affected area coupled with upregulation of VEGF-A and MMP1, 2 and 13.

Function and correlation to disease

In the last decade major breakthroughs in understanding the roles of TNMD in tendons and other tissues and cells have been made. The exact TNMD functions vary according to the type of cell and tissue, and in great extent they remain still not fully deciphered. Also how precisely TNMD contributes to pathophysiology of some correlated diseases is still unclear.

- In tendons it proves to have beneficial functions for the maintenance of the tissue because its loss results in premature tendon ageing characterized with dysregulated collagen fibrillogenesis and reduced cell density and proliferation. Tnmd exerts a positive effect on tendon-derived stem/progenitor cells by supporting self-renewal and preventing senescence, actions in which the C-terminal cysteine-rich domain alone is sufficient. The first studies on Tnmd expression during tendon healing suggested a time-dependent role, which needs to be further elucidated.

- In periodontal ligaments mediating the teeth connection to the jaw bones, Tnmd contributes to proper fibroblast adhesion.

- In tendinous structures chordae tendineae cordis, which connect papillary muscle to the atrioventricular valves in the heart, local absence of Tnmd leads to enhanced angiogenesis, VEGF-A production and MMPs activation. This is followed by cordis ruptures which can cause mitral regurgitation and cardiac valvular diseases.

- With respect to Tnmd anti-angiogenic function in vivo, no major abnormalities in vessel formation and density were detected during tendon and retina development in the knockout mouse model. The latter finding is open for discussion because a study with recombinant tenomodulin has shown an obliterating vessel effect in retina when injected in vivo in the vitreous body.

- In ectopic tumour in vivo models, induced expression of TNMD in mouse melanoma cells resulted in suppression of tumour growth due to reduced vessel density.

- TNMD transduction in human retinal and umbilical vein endothelial cells resulted in reduced cell proliferation or migration, correspondingly.

- Multiple research studies on cell phenotypisation after gene overexpression, stimulation with growth factors or mechanical stress, tissue engineering and biomaterial evaluation utilize Tnmd expression as marker for tendinous and ligamentous cell lineage.

- Research conducted on a genomic level by single nucleotide polymorphism has presented interesting correlations between Tnmd and a variety of diseases namely obesity, type 2 diabetes, metabolic syndrome, Alzheimer's disease and age-related macular degeneration. How exactly these SNPs affect Tnmd transcription, splicing or protein amino acid sequence remains still unknown.

- A strong correlation between Tnmd mRNA expression and the progression of several diseases such as obesity, metabolic syndrome and juvenile dermatomyositis has been shown. Generally, in all these cases higher tenomodulin levels corresponded to advanced disease state.

Notes

JournalThe 2016 version of this article was updated by an external expert under a dual publication model. The corresponding academic peer reviewed article was published in Gene and can be cited as:
Sarah Dex; Dasheng Lin; Chisa Shukunami; Denitsa Docheva (26 April 2016). "Tenogenic modulating insider factor: Systematic assessment on the functions of tenomodulin gene". Gene. Gene Wiki Review Series. 587 (1): 1–17. doi:10.1016/J.GENE.2016.04.051. ISSN 0378-1119. PMC 4897592. PMID 27129941. Wikidata Q26748847.

References

  1. ^ GRCh38: Ensembl release 89: ENSG00000000005Ensembl, May 2017
  2. ^ GRCm38: Ensembl release 89: ENSMUSG00000031250Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Dex S, Lin D, Shukunami C, Docheva D (August 2016). "Tenogenic modulating insider factor: Systematic assessment on the functions of tenomodulin gene". Gene. 587 (1): 1–17. doi:10.1016/j.gene.2016.04.051. PMC 4897592. PMID 27129941.
  6. ^ Shukunami C, Oshima Y, Hiraki Y (February 2001). "Molecular cloning of tenomodulin, a novel chondromodulin-I related gene". Biochemical and Biophysical Research Communications. 280 (5): 1323–7. doi:10.1006/bbrc.2001.4271. PMID 11162673.
  7. ^ Brandau O, Meindl A, Fässler R, Aszódi A (May 2001). "A novel gene, tendin, is strongly expressed in tendons and ligaments and shows high homology with chondromodulin-I". Developmental Dynamics. 221 (1): 72–80. doi:10.1002/dvdy.1126. PMID 11357195.
  8. ^ Shukunami C, Takimoto A, Oro M, Hiraki Y (October 2006). "Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes". Developmental Biology. 298 (1): 234–47. doi:10.1016/j.ydbio.2006.06.036. PMID 16876153.
  9. ^ Shukunami C, Oshima Y, Hiraki Y (July 2005). "Chondromodulin-I and tenomodulin: a new class of tissue-specific angiogenesis inhibitors found in hypovascular connective tissues". Biochemical and Biophysical Research Communications. 333 (2): 299–307. doi:10.1016/j.bbrc.2005.05.133. PMID 15950187.
  10. Yamana K, Wada H, Takahashi Y, Sato H, Kasahara Y, Kiyoki M (February 2001). "Molecular cloning and characterization of CHM1L, a novel membrane molecule similar to chondromodulin-I". Biochemical and Biophysical Research Communications. 280 (4): 1101–6. doi:10.1006/bbrc.2000.4245. PMID 11162640.
  11. Barr PJ (July 1991). "Mammalian subtilisins: the long-sought dibasic processing endoproteases". Cell. 66 (1): 1–3. doi:10.1016/0092-8674(91)90129-m. PMID 2070411. S2CID 34706330.
  12. Sánchez-Pulido L, Devos D, Valencia A (July 2002). "BRICHOS: a conserved domain in proteins associated with dementia, respiratory distress and cancer". Trends in Biochemical Sciences. 27 (7): 329–32. doi:10.1016/s0968-0004(02)02134-5. PMID 12114016.
  13. ^ Komiyama Y, Ohba S, Shimohata N, Nakajima K, Hojo H, Yano F, Takato T, Docheva D, Shukunami C, Hiraki Y, Chung UI (2013). "Tenomodulin expression in the periodontal ligament enhances cellular adhesion". PLOS ONE. 8 (4): e60203. Bibcode:2013PLoSO...860203K. doi:10.1371/journal.pone.0060203. PMC 3622668. PMID 23593173.
  14. Kondo J, Shibata H, Miura S, Yamakawa A, Sato K, Higuchi Y, Shukunami C, Hiraki Y (January 2011). "A functional role of the glycosylated N-terminal domain of chondromodulin-I". Journal of Bone and Mineral Metabolism. 29 (1): 23–30. doi:10.1007/s00774-010-0193-0. hdl:2433/139525. PMID 20506028. S2CID 19455067.
  15. ^ Miura S, Kondo J, Kawakami T, Shukunami C, Aimoto S, Tanaka H, Hiraki Y (July 2012). "Synthetic disulfide-bridged cyclic peptides mimic the anti-angiogenic actions of chondromodulin-I". Cancer Science. 103 (7): 1311–8. doi:10.1111/j.1349-7006.2012.02276.x. PMC 3492907. PMID 22429838.
  16. ^ Docheva D, Hunziker EB, Fässler R, Brandau O (January 2005). "Tenomodulin is necessary for tenocyte proliferation and tendon maturation". Molecular and Cellular Biology. 25 (2): 699–705. doi:10.1128/mcb.25.2.699-705.2005. PMC 543433. PMID 15632070.
  17. ^ Kimura N, Shukunami C, Hakuno D, Yoshioka M, Miura S, Docheva D, Kimura T, Okada Y, Matsumura G, Shin'oka T, Yozu R, Kobayashi J, Ishibashi-Ueda H, Hiraki Y, Fukuda K (October 2008). "Local tenomodulin absence, angiogenesis, and matrix metalloproteinase activation are associated with the rupture of the chordae tendineae cordis". Circulation. 118 (17): 1737–47. doi:10.1161/circulationaha.108.780031. PMID 18838562.
  18. Havis E, Bonnin MA, Olivera-Martinez I, Nazaret N, Ruggiu M, Weibel J, Durand C, Guerquin MJ, Bonod-Bidaud C, Ruggiero F, Schweitzer R, Duprez D (October 2014). "Transcriptomic analysis of mouse limb tendon cells during development". Development. 141 (19): 3683–96. doi:10.1242/dev.108654. PMID 25249460.
  19. Sato I, Miwa Y, Hara S, Fukuyama Y, Sunohara M (December 2014). "Tenomodulin regulated the compartments of embryonic and early postnatal mouse masseter muscle". Annals of Anatomy - Anatomischer Anzeiger. 196 (6): 410–5. doi:10.1016/j.aanat.2014.07.001. PMID 25107480.
  20. Oshima Y, Shukunami C, Honda J, Nishida K, Tashiro F, Miyazaki J, Hiraki Y, Tano Y (May 2003). "Expression and localization of tenomodulin, a transmembrane type chondromodulin-I-related angiogenesis inhibitor, in mouse eyes". Investigative Ophthalmology & Visual Science. 44 (5): 1814–23. doi:10.1167/iovs.02-0664. PMID 12714610.
  21. ^ Saiki A, Olsson M, Jernås M, Gummesson A, McTernan PG, Andersson J, Jacobson P, Sjöholm K, Olsson B, Yamamura S, Walley A, Froguel P, Carlsson B, Sjöström L, Svensson PA, Carlsson LM (October 2009). "Tenomodulin is highly expressed in adipose tissue, increased in obesity, and down-regulated during diet-induced weight loss". The Journal of Clinical Endocrinology and Metabolism. 94 (10): 3987–94. doi:10.1210/jc.2009-0292. PMID 19602561.
  22. Watahiki J, Yamaguchi T, Enomoto A, Irie T, Yoshie K, Tachikawa T, Maki K (June 2008). "Identification of differentially expressed genes in mandibular condylar and tibial growth cartilages using laser microdissection and fluorescent differential display: chondromodulin-I (ChM-1) and tenomodulin (TeM) are differentially expressed in mandibular condylar and other growth cartilages". Bone. 42 (6): 1053–60. doi:10.1016/j.bone.2007.09.048. PMID 18337200.
  23. Murchison ND, Price BA, Conner DA, Keene DR, Olson EN, Tabin CJ, Schweitzer R (July 2007). "Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons". Development. 134 (14): 2697–708. doi:10.1242/dev.001933. PMID 17567668.
  24. Alberton P, Popov C, Prägert M, Kohler J, Shukunami C, Schieker M, Docheva D (April 2012). "Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis". Stem Cells and Development. 21 (6): 846–58. doi:10.1089/scd.2011.0150. PMC 3315756. PMID 21988170.
  25. Mendias CL, Bakhurin KI, Faulkner JA (January 2008). "Tendons of myostatin-deficient mice are small, brittle, and hypocellular". Proceedings of the National Academy of Sciences of the United States of America. 105 (1): 388–93. Bibcode:2008PNAS..105..388M. doi:10.1073/pnas.0707069105. PMC 2224222. PMID 18162552.
  26. Lejard V, Blais F, Guerquin MJ, Bonnet A, Bonnin MA, Havis E, Malbouyres M, Bidaud CB, Maro G, Gilardi-Hebenstreit P, Rossert J, Ruggiero F, Duprez D (February 2011). "EGR1 and EGR2 involvement in vertebrate tendon differentiation". The Journal of Biological Chemistry. 286 (7): 5855–67. doi:10.1074/jbc.m110.153106. PMC 3037698. PMID 21173153.
  27. Liu W, Watson SS, Lan Y, Keene DR, Ovitt CE, Liu H, Schweitzer R, Jiang R (October 2010). "The atypical homeodomain transcription factor Mohawk controls tendon morphogenesis". Molecular and Cellular Biology. 30 (20): 4797–807. doi:10.1128/mcb.00207-10. PMC 2950547. PMID 20696843.
  28. Miyabara S, Yuda Y, Kasashima Y, Kuwano A, Arai K (2014). "Regulation of Tenomodulin Expression Via Wnt/β-catenin Signaling in Equine Bone Marrow-derived Mesenchymal Stem Cells". Journal of Equine Science. 25 (1): 7–13. doi:10.1294/jes.25.7. PMC 4019198. PMID 24834008.
  29. ^ Alberton P, Dex S, Popov C, Shukunami C, Schieker M, Docheva D (March 2015). "Loss of tenomodulin results in reduced self-renewal and augmented senescence of tendon stem/progenitor cells". Stem Cells and Development. 24 (5): 597–609. doi:10.1089/scd.2014.0314. PMC 4333258. PMID 25351164.
  30. Tokunaga T, Shukunami C, Okamoto N, Taniwaki T, Oka K, Sakamoto H, Ide J, Mizuta H, Hiraki Y (October 2015). "FGF-2 Stimulates the Growth of Tenogenic Progenitor Cells to Facilitate the Generation of Tenomodulin-Positive Tenocytes in a Rat Rotator Cuff Healing Model". The American Journal of Sports Medicine. 43 (10): 2411–22. doi:10.1177/0363546515597488. hdl:2433/202601. PMID 26311443. S2CID 5374974.
  31. Omachi T, Sakai T, Hiraiwa H, Hamada T, Ono Y, Nakashima M, Ishizuka S, Matsukawa T, Oda T, Takamatsu A, Yamashita S, Ishiguro N (March 2015). "Expression of tenocyte lineage-related factors in regenerated tissue at sites of tendon defect". Journal of Orthopaedic Science. 20 (2): 380–9. doi:10.1007/s00776-014-0684-2. PMC 4366561. PMID 25542223.
  32. Hakuno D, Kimura N, Yoshioka M, Fukuda K (December 2011). "Role of angiogenetic factors in cardiac valve homeostasis and disease". Journal of Cardiovascular Translational Research. 4 (6): 727–40. doi:10.1007/s12265-011-9317-8. PMID 21866383. S2CID 32893651.
  33. Wang W, Li Z, Sato T, Oshima Y (20 November 2012). "Tenomodulin inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy". International Journal of Molecular Sciences. 13 (11): 15373–86. doi:10.3390/ijms131115373. PMC 3509647. PMID 23203131.
  34. ^ Oshima Y, Sato K, Tashiro F, Miyazaki J, Nishida K, Hiraki Y, Tano Y, Shukunami C (June 2004). "Anti-angiogenic action of the C-terminal domain of tenomodulin that shares homology with chondromodulin-I". Journal of Cell Science. 117 (Pt 13): 2731–44. doi:10.1242/jcs.01112. PMID 15150318.
  35. ^ Tolppanen AM, Pulkkinen L, Kolehmainen M, Schwab U, Lindström J, Tuomilehto J, Uusitupa M (May 2007). "Tenomodulin is associated with obesity and diabetes risk: the Finnish diabetes prevention study". Obesity. 15 (5): 1082–8. doi:10.1038/oby.2007.613. PMID 17495183.
  36. Tolppanen AM, Pulkkinen L, Kuulasmaa T, Kolehmainen M, Schwab U, Lindström J, Tuomilehto J, Uusitupa M, Kuusisto J (December 2008). "The genetic variation in the tenomodulin gene is associated with serum total and LDL cholesterol in a body size-dependent manner". International Journal of Obesity. 32 (12): 1868–72. doi:10.1038/ijo.2008.217. PMID 18982016.
  37. Tolppanen AM, Helisalmi S, Hiltunen M, Kolehmainen M, Schwab U, Pirttilä T, Pulkkinen L, Uusitupa M, Soininen H (March 2011). "Tenomodulin variants, APOE and Alzheimer's disease in a Finnish case-control cohort". Neurobiology of Aging. 32 (3): 546.e7–9. doi:10.1016/j.neurobiolaging.2009.05.010. PMID 19524323. S2CID 8198737.
  38. Tolppanen AM, Nevalainen T, Kolehmainen M, Seitsonen S, Immonen I, Uusitupa M, Kaarniranta K, Pulkkinen L (2009). "Single nucleotide polymorphisms of the tenomodulin gene (TNMD) in age-related macular degeneration". Molecular Vision. 15: 762–70. PMC 2669446. PMID 19381347.
  39. Kolehmainen M, Salopuro T, Schwab US, Kekäläinen J, Kallio P, Laaksonen DE, Pulkkinen L, Lindi VI, Sivenius K, Mager U, Siitonen N, Niskanen L, Gylling H, Rauramaa R, Uusitupa M (February 2008). "Weight reduction modulates expression of genes involved in extracellular matrix and cell death: the GENOBIN study". International Journal of Obesity. 32 (2): 292–303. doi:10.1038/sj.ijo.0803718. PMID 17848939.
  40. González-Muniesa P, Marrades MP, Martínez JA, Moreno-Aliaga MJ (22 August 2013). "Differential proinflammatory and oxidative stress response and vulnerability to metabolic syndrome in habitual high-fat young male consumers putatively predisposed by their genetic background". International Journal of Molecular Sciences. 14 (9): 17238–55. doi:10.3390/ijms140917238. PMC 3794726. PMID 23975165.
  41. Chen YW, Shi R, Geraci N, Shrestha S, Gordish-Dressman H, Pachman LM (31 July 2008). "Duration of chronic inflammation alters gene expression in muscle from untreated girls with juvenile dermatomyositis". BMC Immunology. 9: 43. doi:10.1186/1471-2172-9-43. PMC 2529263. PMID 18671865.
Categories: