Misplaced Pages

Tetrahedral cupola

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.
Find sources: "Tetrahedral cupola" – news · newspapers · books · scholar · JSTOR (April 2024)
Tetrahedral cupola

Schlegel diagram
Type Polyhedral cupola
Schläfli symbol {3,3} v rr{3,3}
Cells 16 1 rr{3,3}
1+4 {3,3}
4+6 {}×{3}
Faces 42 24 triangles
18 squares
Edges 42
Vertices 16
Dual
Symmetry group , order 24
Properties convex, regular-faced

In 4-dimensional geometry, the tetrahedral cupola is a polychoron bounded by one tetrahedron, a parallel cuboctahedron, connected by 10 triangular prisms, and 4 triangular pyramids.

Related polytopes

The tetrahedral cupola can be sliced off from a runcinated 5-cell, on a hyperplane parallel to a tetrahedral cell. The cuboctahedron base passes through the center of the runcinated 5-cell, so the Tetrahedral cupola contains half of the tetrahedron and triangular prism cells of the runcinated 5-cell. The cupola can be seen in A2 and A3 Coxeter plane orthogonal projection of the runcinated 5-cell:

A3 Coxeter plane
Runcinated 5-cell Tetrahedron
(Cupola top)
Cuboctahedron
(Cupola base)
A2 Coxeter plane

See also

References

  1. Convex Segmentochora Dr. Richard Klitzing, Symmetry: Culture and Science, Vol. 11, Nos. 1-4, 139-181, 2000 (4.23 tetrahedron || cuboctahedron)

External links


Stub icon

This 4-polytope article is a stub. You can help Misplaced Pages by expanding it.

Categories: