Thermophysics is the application of thermodynamics to geophysics and to planetary science more broadly. It may also be used to refer to the field of thermodynamic and transport properties.
Remote sensing
Earth thermophysics is a branch of geophysics that uses the naturally occurring surface temperature as a function of the cyclical variation in solar radiation to characterise planetary material properties.
Thermophysical properties are characteristics that control the diurnal, seasonal, or climatic surface and subsurface temperature variations (or thermal curves) of a material. The most important thermophysical property is thermal inertia, which controls the amplitude of the thermal curve and albedo (or reflectivity), which controls the average temperature.
This field of observations and computer modeling was first applied to Mars due to the ideal atmospheric pressure for characterising granular materials based upon temperature. The Mariner 6, Mariner 7, and Mariner 9 spacecraft carried thermal infrared radiometers, and a global map of thermal inertia was produced from modeled surface temperatures collected by the Infrared Thermal Mapper Instruments (IRTM) on board the Viking 1 and 2 Orbiters.
The original thermophysical models were based upon the studies of lunar temperature variations. Further development of the models for Mars included surface-atmosphere energy transfer, atmospheric back-radiation, surface emissivity variations, CO2 frost and blocky surfaces, variability of atmospheric back-radiation, effects of a radiative-convective atmosphere, and single-point temperature observations.
References
- "International Journal of Thermophysics". Springer. Retrieved 2022-12-13.
- Wechsler & Glaser (1965).
- ^ Neugebauer et al. (1971).
- ^ Kieffer et al. (1973).
- ^ Kieffer et al. (1977).
- Wesselink (1948).
- Jaeger (1953).
- Leovy (1966).
- Haberle & Jakosky (1991).
- Hayashi et al. (1995).
- Jakosky et al. (2000).
- Mellon et al. (2000).
- Haberle, R.M.; Jakosky, B.M. (1991). "Atmospheric effects on the remote determination of thermal inertia on Mars". Icarus. 90 (2): 187–204. Bibcode:1991Icar...90..187H. doi:10.1016/0019-1035(91)90100-8.
- Hayashi, J.N.; Jakosky, B.M.; Haberle, R.M. (1995). "Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo". J. Geophys. Res. 100 (E3): 5277–5284. Bibcode:1995JGR...100.5277H. doi:10.1029/94JE02449. hdl:2060/19940031630.
- Jaeger, J.C. (1953). "The Surface Temperature of the Moon". Aust. J. Phys. 6: 10. Bibcode:1953AuJPh...6...10J. doi:10.1071/PH530010.
- Jakosky, B.M.; Mellon, M.T.; Kieffer, H.H.; Christensen, P.R.; Varnes, E.S.; Lee, S.W. (2000). "The Thermal Inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer". J. Geophys. Res. 105 (E4): 9643–9652. Bibcode:2000JGR...105.9643J. doi:10.1029/1999JE001088.
- Kieffer, H.H.; Chase, S.C.; Miner, E.; Munch, G.; Neugebauer, G. (1973). "Preliminary Report on Infrared Radiometric Measurements from the Mariner 9 Spacecraft" (PDF). J. Geophys. Res. 78 (20): 4291–4312. Bibcode:1973JGR....78.4291K. doi:10.1029/JB078i020p04291.
- Kieffer, H.H.; Martin, T.Z.; Peterfreund, A.R.; Jakosky, B.M.; Miner, E.D.; Palluconi, F.D. (1977). "Thermal and Albedo Mapping of Mars During the Viking Primary Mission". J. Geophys. Res. 82 (28): 4249–4290. Bibcode:1977JGR....82.4249K. doi:10.1029/JS082i028p04249.
- Leovy, C. (1966). "Note on the thermal properties of Mars". Icarus. 5 (1–6): 1–6. Bibcode:1966Icar....5....1L. doi:10.1016/0019-1035(66)90002-9. hdl:2060/19650016474.
- Mellon, M.T; Jakosky, B.M.; Kieffer, H.H.; Christensen, P.R. (2000). "High Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer". Icarus. 148 (2): 437–455. Bibcode:2000Icar..148..437M. doi:10.1006/icar.2000.6503.
- Neugebauer, G.; Munch, G.; Kieffer, H.H.; Chase, S.C.; Miner, E. (1971). "Mariner 1969 Infrared Radiometer Results: Temperatures and Thermal Properties of the Martian Surface" (PDF). Astron. J. 76: 719. Bibcode:1971AJ.....76..719N. doi:10.1086/111189.
- Wechsler, A.E.; Glaser, P.E. (1965). "Pressure Effects on Postulated Lunar Materials". Icarus. 4 (4): 335. Bibcode:1965Icar....4..335W. doi:10.1016/0019-1035(65)90038-2.
- Wesselink, A.J. (1948). "Heat conductivity and nature of the lunar surface material". Bull. Astron. Inst. Neth. 10: 351–363. Bibcode:1948BAN....10..351W.