This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources. Find sources: "Tonelli's theorem" functional analysis – news · newspapers · books · scholar · JSTOR (January 2013) |
In mathematics, Tonelli's theorem in functional analysis is a fundamental result on the weak lower semicontinuity of nonlinear functionals on L spaces. As such, it has major implications for functional analysis and the calculus of variations. Roughly, it shows that weak lower semicontinuity for integral functionals is equivalent to convexity of the integral kernel. The result is attributed to the Italian mathematician Leonida Tonelli.
Statement of the theorem
Let be a bounded domain in -dimensional Euclidean space and let be a continuous extended real-valued function. Define a nonlinear functional on functions by
Then is sequentially weakly lower semicontinuous on the space for and weakly-∗ lower semicontinuous on if and only if is convex.
See also
References
- Renardy, Michael & Rogers, Robert C. (2004). An introduction to partial differential equations. Texts in Applied Mathematics 13 (Second ed.). New York: Springer-Verlag. p. 347. ISBN 0-387-00444-0. (Theorem 10.16)
Convex analysis and variational analysis | |
---|---|
Basic concepts | |
Topics (list) | |
Maps | |
Main results (list) | |
Sets | |
Series | |
Duality | |
Applications and related |
Measure theory | |||||
---|---|---|---|---|---|
Basic concepts | |||||
Sets | |||||
Types of measures |
| ||||
Particular measures | |||||
Maps | |||||
Main results |
| ||||
Other results |
| ||||
Applications & related |
Banach space topics | |
---|---|
Types of Banach spaces | |
Banach spaces are: | |
Function space Topologies | |
Linear operators | |
Operator theory | |
Theorems |
|
Analysis | |
Types of sets |
|
Subsets / set operations | |
Examples | |
Applications |