Misplaced Pages

Bel decomposition

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Topogravitic tensor)
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Bel decomposition" – news · newspapers · books · scholar · JSTOR (March 2013) (Learn how and when to remove this message)
The topic of this article may not meet Misplaced Pages's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.
Find sources: "Bel decomposition" – news · newspapers · books · scholar · JSTOR (October 2020) (Learn how and when to remove this message)
(Learn how and when to remove this message)

In semi-Riemannian geometry, the Bel decomposition, taken with respect to a specific timelike congruence, is a way of breaking up the Riemann tensor of a pseudo-Riemannian manifold into lower order tensors with properties similar to the electric field and magnetic field. Such a decomposition was partially described by Alphonse Matte in 1953 and by Lluis Bel in 1958.

This decomposition is particularly important in general relativity. This is the case of four-dimensional Lorentzian manifolds, for which there are only three pieces with simple properties and individual physical interpretations.

Decomposition of the Riemann tensor

In four dimensions the Bel decomposition of the Riemann tensor, with respect to a timelike unit vector field X {\displaystyle {\vec {X}}} , not necessarily geodesic or hypersurface orthogonal, consists of three pieces:

  1. the electrogravitic tensor E [ X ] a b = R a m b n X m X n {\displaystyle E_{ab}=R_{ambn}\,X^{m}\,X^{n}}
  2. the magnetogravitic tensor B [ X ] a b = R a m b n X m X n {\displaystyle B_{ab}={{}^{\star }R}_{ambn}\,X^{m}\,X^{n}}
  3. the topogravitic tensor L [ X ] a b = R a m b n X m X n {\displaystyle L_{ab}={{}^{\star }R^{\star }}_{ambn}\,X^{m}\,X^{n}}
    • Can be interpreted as representing the sectional curvatures for the spatial part of a frame field.

Because these are all transverse (i.e. projected to the spatial hyperplane elements orthogonal to our timelike unit vector field), they can be represented as linear operators on three-dimensional vectors, or as three-by-three real matrices. They are respectively symmetric, traceless, and symmetric (6,8,6 linearly independent components, for a total of 20). If we write these operators as E, B, L respectively, the principal invariants of the Riemann tensor are obtained as follows:

  • K 1 / 4 {\displaystyle K_{1}/4} is the trace of E + L - 2 B B,
  • K 2 / 8 {\displaystyle -K_{2}/8} is the trace of B ( E - L ),
  • K 3 / 8 {\displaystyle K_{3}/8} is the trace of E L - B.

See also

References

  1. Matte, A. (1953), "Sur de nouvelles solutions oscillatoires des equations de la gravitation", Can. J. Math., 5: 1, doi:10.4153/CJM-1953-001-3
  2. Bel, L. (1958), "Définition d'une densité d'énergie et d'un état de radiation totale généralisée", Comptes rendus hebdomadaires des séances de l'Académie des sciences, 246: 3015


Stub icon

This relativity-related article is a stub. You can help Misplaced Pages by expanding it.

Stub icon

This mathematical physics-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: