Misplaced Pages

Topological functor

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Topological concrete category)

In category theory and general topology, a topological functor is one which has similar properties to the forgetful functor from the category of topological spaces. The domain of a topological functor admits construction similar to initial topology (and equivalently the final topology) of a family of functions. The notion of topological functors generalizes (and strengthens) that of fibered categories, for which one considers a single morphism instead of a family.

Definition

Source and sink

A source ( X , ( Y i ) i I , ( f i : X Y i ) i I ) {\displaystyle (X,(Y_{i})_{i\in I},(f_{i}\colon X\to Y_{i})_{i\in I})} in a category E {\displaystyle {\mathcal {E}}} consists of the following data:

  • an object X E {\displaystyle X\in {\mathcal {E}}} ,
  • a (possibly proper) class of objects ( Y i ) i I E {\displaystyle (Y_{i})_{i\in I}\subseteq {\mathcal {E}}}
  • and a class of morphisms ( f i : X Y i ) i I {\displaystyle (f_{i}\colon X\to Y_{i})_{i\in I}} .

Dually, a sink ( X , ( Y i ) i I , ( f i : Y i X ) i I ) {\displaystyle (X,(Y_{i})_{i\in I},(f_{i}\colon Y_{i}\to X)_{i\in I})} in E {\displaystyle {\mathcal {E}}} consists of

  • an object X E {\displaystyle X\in {\mathcal {E}}} ,
  • a class of objects ( Y i ) i I E {\displaystyle (Y_{i})_{i\in I}\subseteq {\mathcal {E}}}
  • and a class of morphisms ( f i : Y i X ) i I {\displaystyle (f_{i}\colon Y_{i}\to X)_{i\in I}} .

In particular, a source ( f i : X Y i ) i I {\displaystyle (f_{i}\colon X\to Y_{i})_{i\in I}} is an object X {\displaystyle X} if I {\displaystyle I} is empty, a morphism X Y {\displaystyle X\to Y} if I {\displaystyle I} is a set of a single element. Similarly for a sink.

Initial source and final sink

Let ( f i : X Y i ) i I {\displaystyle (f_{i}\colon X\to Y_{i})_{i\in I}} be a source in a category E {\displaystyle {\mathcal {E}}} and let Π : E B {\displaystyle \Pi \colon {\mathcal {E}}\to {\mathcal {B}}} be a functor. The source ( f i ) i I {\displaystyle (f_{i})_{i\in I}} is said to be a Π {\displaystyle \Pi } -initial source if it satisfies the following universal property.

  • For every object X E {\displaystyle X'\in {\mathcal {E}}} , a morphism g ^ : Π ( X ) Π ( X ) {\displaystyle {\hat {g}}\colon \Pi (X')\to \Pi (X)} and a family of morphisms ( f i : X Y i ) i I {\displaystyle (f'_{i}\colon X'\to Y_{i})_{i\in I}} such that Π ( f i ) g ^ = Π ( f i ) {\displaystyle \Pi (f_{i})\circ {\hat {g}}=\Pi (f'_{i})} for each i I {\displaystyle i\in I} , there exists a unique E {\displaystyle {\mathcal {E}}} -morphism g : X X {\displaystyle g\colon X'\to X} such that g ^ = Π ( g ) {\displaystyle {\hat {g}}=\Pi (g)} and i I : f i g = f i {\displaystyle \forall i\in I\colon f_{i}\circ g=f'_{i}} .
    E Π B X ! g ! g f i X f i Y i Π Π X g ^ g ^ Π f i Π X Π f i Π Y i {\displaystyle {\begin{matrix}{\mathcal {E}}&\qquad {\overset {\Pi }{\to }}\qquad &{\mathcal {B}}\\\hline {\begin{matrix}X'\\{\scriptstyle \exists !g}\downarrow {\color {White}\scriptstyle \exists !g}&\searrow \!\!^{f'_{i}}\!\!\!\!\!\!\\X&{\underset {f_{i}}{\to }}&Y_{i}\end{matrix}}&\qquad {\overset {\Pi }{\mapsto }}\qquad &{\begin{matrix}\Pi X'\\{\scriptstyle {\hat {g}}}\downarrow {\color {White}\scriptstyle {\hat {g}}}&\searrow \!\!^{\Pi f'_{i}}\!\!\!\!\!\!\\\Pi X&{\underset {\Pi f_{i}}{\to }}&\Pi Y_{i}\end{matrix}}\end{matrix}}}

Similarly one defines the dual notion of Π {\displaystyle \Pi } -final sink.

When I {\displaystyle I} is a set of a single element, the initial source is called a Cartesian morphism.

Lift

Let E {\displaystyle {\mathcal {E}}} , B {\displaystyle {\mathcal {B}}} be two categories. Let Π : E B {\displaystyle \Pi \colon {\mathcal {E}}\to {\mathcal {B}}} be a functor. A source ( f ^ i : X ^ Y ^ i ) i I {\displaystyle ({\hat {f}}_{i}\colon {\hat {X}}\to {\hat {Y}}_{i})_{i\in I}} in B {\displaystyle {\mathcal {B}}} is a Π {\displaystyle \Pi } -structured source if for each i {\displaystyle i} we have Y ^ i = Π ( Y i ) {\displaystyle {\hat {Y}}_{i}=\Pi (Y_{i})} for some Y i E {\displaystyle Y_{i}\in {\mathcal {E}}} . One similarly defines a Π {\displaystyle \Pi } -structured sink.

A lift of a Π {\displaystyle \Pi } -structured source ( f ^ i : X ^ Π ( Y i ) ) i I {\displaystyle ({\hat {f}}_{i}\colon {\hat {X}}\to \Pi (Y_{i}))_{i\in I}} is a source ( f i : X ^ Y i ) i I {\displaystyle (f_{i}\colon {\hat {X}}\to Y_{i})_{i\in I}} in E {\displaystyle {\mathcal {E}}} such that Π ( X ) = X ^ {\displaystyle \Pi (X)={\hat {X}}} and Π ( f i ) = f ^ i {\displaystyle \Pi (f_{i})={\hat {f}}_{i}} for each i I {\displaystyle i\in I}

E Π B X f i f i Y i Π X ^ f ^ i f ^ i Π Y i {\displaystyle {\begin{matrix}{\mathcal {E}}&\qquad {\overset {\Pi }{\to }}\qquad &{\mathcal {B}}\\\hline {\begin{matrix}\exists X\\{\scriptstyle \exists f_{i}}\downarrow {\color {White}\scriptstyle \exists f_{i}}\\Y_{i}\end{matrix}}&\qquad {\overset {\Pi }{\mapsto }}\qquad &{\begin{matrix}{\hat {X}}\\{\scriptstyle {\hat {f}}_{i}}\downarrow {\color {White}\scriptstyle {\hat {f}}_{i}}\\\Pi Y_{i}\end{matrix}}\end{matrix}}}

A lift of a Π {\displaystyle \Pi } -structured sink is similarly defined. Since initial and final lifts are defined via universal properties, they are unique up to a unique isomorphism, if they exist.

If a Π {\displaystyle \Pi } -structured source ( X ^ Π ( Y i ) ) i I {\displaystyle ({\hat {X}}\to \Pi (Y_{i}))_{i\in I}} has an initial lift ( X Y i ) i I {\displaystyle (X\to Y_{i})_{i\in I}} , we say that X {\displaystyle X} is an initial E {\displaystyle {\mathcal {E}}} -structure on X ^ {\displaystyle {\hat {X}}} with respect to ( X ^ Π ( Y i ) ) i I {\displaystyle ({\hat {X}}\to \Pi (Y_{i}))_{i\in I}} . Similarly for a final E {\displaystyle {\mathcal {E}}} -structure with respect to a Π {\displaystyle \Pi } -structured sink.

Topological functor

Let Π : E B {\displaystyle \Pi \colon {\mathcal {E}}\to {\mathcal {B}}} be a functor. Then the following two conditions are equivalent.

  • Every Π {\displaystyle \Pi } -structured source has an initial lift. That is, an initial structure always exists.
  • Every Π {\displaystyle \Pi } -structured sink has a final lift. That is, a final structure always exists.

A functor satisfying this condition is called a topological functor.

One can define topological functors in a different way, using the theory of enriched categories.

A concrete category ( E , F ) {\displaystyle ({\mathcal {E}},F)} is called a topological (concrete) category if the forgetful functor F : E Set {\displaystyle F\colon {\mathcal {E}}\to \operatorname {Set} } is topological. (A topological category can also mean an enriched category enriced over the category Top {\displaystyle \operatorname {Top} } of topological spaces.) Some require a topological category to satisfy two additional conditions.

  • Constant functions in S e t {\displaystyle \mathbf {Set} } lift to E {\displaystyle {\mathcal {E}}} -morphisms.
  • Fibers Π 1 ( X ^ ) {\displaystyle \Pi ^{-1}({\hat {X}})} ( X ^ S e t {\displaystyle {\hat {X}}\in \mathbf {Set} } ) are small (they are sets and not proper classes).

Properties

Every topological functor is faithful.

Let P {\displaystyle {\mathsf {P}}} be one of the following four properties of categories:

If Π : E B {\displaystyle \Pi \colon {\mathcal {E}}\to {\mathcal {B}}} is topological and B {\displaystyle {\mathcal {B}}} has property P {\displaystyle {\mathsf {P}}} , then E {\displaystyle {\mathcal {E}}} also has property P {\displaystyle {\mathsf {P}}} .

Let E {\displaystyle {\mathcal {E}}} be a category. Then the topological functors E Set {\displaystyle {\mathcal {E}}\to \operatorname {Set} } are unique up to natural isomorphism.

Examples

An example of a topological category is the category of all topological spaces with continuous maps, where one uses the standard forgetful functor.

References

  1. ^ Garner, Richard (2014-08-12). "Topological functors as total categories". Theory and Applications of Categories. 29 (15): 406–421. arXiv:1310.0903. Bibcode:2013arXiv1310.0903G. ISSN 1201-561X. Zbl 1305.18005.
  2. ^ Herrlich, Horst (June 1974). "Topological functors". General Topology and Its Applications. 4 (2): 125–142. doi:10.1016/0016-660X(74)90016-6.
  3. Brümmer, G. C. L. (September 1984). "Topological categories". Topology and Its Applications. 18 (1): 27–41. doi:10.1016/0166-8641(84)90029-4. ISSN 0166-8641.
  4. Lowen, Robert; Sioen, Mark; Verwulgen, Stijn (2009). "Categorical topology". In Mynard, Frédéric; Pearl, Elliott (eds.). Beyond topology. Contemporary Mathematics. Vol. 486. American Mathematical Society. doi:10.1090/conm/486/9506 (inactive 2024-11-16). ISBN 978-0-8218-4279-9. MR 2521941.{{cite book}}: CS1 maint: DOI inactive as of November 2024 (link)
  5. Hoffmann, Rudolf-E. (1975). "Topological functors and factorizations". Archives of Mathematics. 26: 1–7. doi:10.1007/BF01229694. ISSN 0003-889X. MR 0428255. Zbl 0309.18002.
  6. Brümmer, G. C. L. (September 1984). "Topological categories". Topology and Its Applications. 18 (1): 27–41. doi:10.1016/0166-8641(84)90029-4.
Categories: