Misplaced Pages

Torricelli's law

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Theorem in fluid mechanics
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Torricelli's law" – news · newspapers · books · scholar · JSTOR (October 2024) (Learn how and when to remove this message)
Torricelli's law describes the parting speed of a jet of water, based on the distance below the surface at which the jet starts, assuming no air resistance, viscosity, or other hindrance to the fluid flow. This diagram shows several such jets, vertically aligned, leaving the reservoir horizontally. In this case, the jets have an envelope (a concept also due to Torricelli) which is a line descending at 45° from the water's surface over the jets. Each jet reaches farther than any other jet at the point where it touches the envelope, which is at twice the depth of the jet's source. The depth at which two jets cross is the sum of their source depths. Every jet (even if not leaving horizontally) takes a parabolic path whose directrix is the surface of the water.

Torricelli's law, also known as Torricelli's theorem, is a theorem in fluid dynamics relating the speed of fluid flowing from a hole to the height of fluid above the hole. The law states that the speed v {\displaystyle v} of efflux of a fluid through a sharp-edged hole in the wall of the tank filled to a height h {\displaystyle h} above the hole is the same as the speed that a body would acquire in falling freely from a height h {\displaystyle h} ,

v = 2 g h {\displaystyle v={\sqrt {2gh}}}

where g {\displaystyle g} is the acceleration due to gravity. This expression comes from equating the kinetic energy gained, 1 2 m v 2 {\displaystyle {\tfrac {1}{2}}mv^{2}} , with the potential energy lost, m g h {\displaystyle mgh} , and solving for v {\displaystyle v} . The law was discovered (though not in this form) by the Italian scientist Evangelista Torricelli, in 1643. It was later shown to be a particular case of Bernoulli's principle.

Derivation

Under the assumptions of an incompressible fluid with negligible viscosity, Bernoulli's principle states that the hydraulic energy is constant

p 1 ρ 1 + v 1 2 2 + g y 1 = p 2 ρ 2 + v 2 2 2 + g y 2 = constant {\displaystyle {\frac {p_{1}}{\rho _{1}}}+{\frac {{v_{1}}^{2}}{2}}+gy_{1}={\frac {p_{2}}{\rho _{2}}}+{\frac {{v_{2}}^{2}}{2}}+gy_{2}={\text{constant}}}

at any two points in the flowing liquid. Here v {\displaystyle v} is fluid speed, g {\displaystyle g} is the acceleration due to gravity, y {\displaystyle y} is the height above some reference point, p {\displaystyle p} is the pressure, and ρ {\displaystyle \rho } is the density.

In order to derive Torricelli's formula the first point with no index is taken at the liquid's surface, and the second just outside the opening. Since the liquid is assumed to be incompressible, ρ 1 {\displaystyle \rho _{1}} is equal to ρ 2 {\displaystyle \rho _{2}} and; both can be represented by one symbol ρ {\displaystyle \rho } . The pressure p 1 {\displaystyle p_{1}} and p 2 {\displaystyle p_{2}} are typically both atmospheric pressure, so p 1 = p 2 p 1 p 2 = 0 {\displaystyle p_{1}=p_{2}\Rightarrow p_{1}-p_{2}=0} . Furthermore y 1 y 2 {\displaystyle y_{1}-y_{2}} is equal to the height h {\displaystyle h} of the liquid's surface over the opening:

v 1 2 2 + g h = v 2 2 2 {\displaystyle {\frac {{v_{1}}^{2}}{2}}+gh={\frac {{v_{2}}^{2}}{2}}}

The velocity of the surface v 1 {\displaystyle v_{1}} can by related to the outflow velocity v 2 {\displaystyle v_{2}} by the continuity equation v 1 A = v 2 A A {\displaystyle v_{1}A=v_{2}A_{A}} , where A A {\displaystyle A_{A}} is the orifice's cross section and A {\displaystyle A} is the (cylindrical) vessel's cross section. Renaming v 2 {\displaystyle v_{2}} to v A {\displaystyle v_{A}} (A like Aperture) gives:

v A 2 2 A A 2 A 2 + g h = v A 2 2 {\displaystyle {\frac {{v_{A}}^{2}}{2}}{\frac {A_{A}^{2}}{A^{2}}}+gh={\frac {{v_{A}}^{2}}{2}}}
g h = v A 2 2 ( 1 A A 2 A 2 ) . {\displaystyle \Rightarrow gh={\frac {{v_{A}}^{2}}{2}}\left(1-{\frac {A_{A}^{2}}{A^{2}}}\right).}
v A = 2 g h 1 A A 2 A 2 . {\displaystyle \Rightarrow {v_{A}}={\sqrt {\frac {2gh}{1-{\frac {A_{A}^{2}}{A^{2}}}}}}.}

Torricelli's law is obtained as a special case when the opening A A {\displaystyle A_{A}} is very small relative to the horizontal cross-section of the container A 1 {\displaystyle A_{1}} :

v A = 2 g h . {\displaystyle v_{A}={\sqrt {2gh}}.}

Torricelli's law can only be applied when viscous effects can be neglected which is the case for water flowing out through orifices in vessels.

Experimental verification: Spouting can experiment

Experiment to determine the trajectory of an outflowing jet: Vertical rods are adjusted so they are nearly touching the jet. After the experiment the distance between a horizontal line and the location of the jet can be measured by the length adjustments of the rods.

Every physical theory must be verified by experiments. The spouting can experiment consists of a cylindrical vessel filled up with water and with several holes in different heights. It is designed to show that in a liquid with an open surface, pressure increases with depth. The fluid exit velocity is greater further down the vessel.

The outflowing jet forms a downward parabola where every parabola reaches farther out the larger the distance between the orifice and the surface is. The shape of the parabola y ( x ) {\displaystyle y(x)} is only dependent on the outflow velocity and can be determined from the fact that every molecule of the liquid forms a ballistic trajectory (see projectile motion) where the initial velocity is the outflow velocity v A {\displaystyle v_{A}} :

y ( x ) = 1 2 g v A 2 x 2 . {\displaystyle y(x)=-{\frac {1}{2}}{\frac {g}{v_{A}^{2}}}x^{2}.}

The results confirm the correctness of Torricelli's law very well.

Discharge and time to empty a cylindrical vessel

Assuming that a vessel is cylindrical with fixed cross-sectional area A {\displaystyle A} , with orifice of area A A {\displaystyle A_{A}} at the bottom, then rate of change of water level height d h / d t {\displaystyle dh/dt} is not constant. The water volume in the vessel is changing due to the discharge V ˙ {\displaystyle {\dot {V}}} out of the vessel:

d V d t = A d h d t = V ˙ = A A v A = A A 2 g h A d h h = A A 2 g d t {\displaystyle {\frac {dV}{dt}}=A{\frac {dh}{dt}}={\dot {V}}=A_{A}v_{A}=A_{A}{\sqrt {2gh}}\quad \Rightarrow \quad A{\frac {dh}{\sqrt {h}}}=A_{A}{\sqrt {2g}}\;dt}

Integrating both sides and re-arranging, we obtain

T = A A A 2 H g , {\displaystyle T={\frac {A}{A_{A}}}{\sqrt {\frac {2H}{g}}},}

where H {\displaystyle H} is the initial height of the water level and T {\displaystyle T} is the total time taken to drain all the water and hence empty the vessel.

This formula has several implications. If a tank with volume V {\displaystyle V} with cross section A {\displaystyle A} and height H {\displaystyle H} , so that V = A H {\displaystyle V=AH} , is fully filled, then the time to drain all the water is

T = V A A 2 g H . {\displaystyle T={\frac {V}{A_{A}}}{\sqrt {\frac {2}{gH}}}.}

This implies that high tanks with same filling volume drain faster than wider ones.

Lastly, we can re-arrange the above equation to determine the height of the water level h ( t ) {\displaystyle h(t)} as a function of time t {\displaystyle t} as

h ( t ) = H ( 1 t T ) 2 , {\displaystyle h(t)=H\left(1-{\frac {t}{T}}\right)^{2},}

where H {\displaystyle H} is the height of the container while T {\displaystyle T} is the discharge time as given above.

Discharge experiment, coefficient of discharge

The discharge theory can be tested by measuring the emptying time T {\displaystyle T} or time series of the water level h ( t ) {\displaystyle h(t)} within the cylindrical vessel. In many cases, such experiments do not confirm the presented discharge theory: when comparing the theoretical predictions of the discharge process with measurements, very large differences can be found in such cases. In reality, the tank usually drains much more slowly. Looking at the discharge formula

V ˙ = A A v A = A A 2 g h {\displaystyle {\dot {V}}=A_{A}v_{A}=A_{A}{\sqrt {2gh}}}

two quantities could be responsible for this discrepancy: the outflow velocity or the effective outflow cross section.

Figure 28 of Daniel Bernoulli's Hydrodynamica (1738) showing the generation of a vena contracta with streamlines.

In 1738 Daniel Bernoulli attributed the discrepancy between the theoretical and the observed outflow behavior to the formation of a vena contracta which reduces the outflow cross-section from the orifice's cross-section A A {\displaystyle A_{A}} to the contracted cross-section A C {\displaystyle A_{C}} and stated that the discharge is:

V ˙ = A C v A = A C 2 g h {\displaystyle {\dot {V}}=A_{C}v_{A}=A_{C}{\sqrt {2gh}}}

Actually this is confirmed by state-of-the-art experiments (see ) in which the discharge, the outflow velocity and the cross-section of the vena contracta were measured. Here it was also shown that the outflow velocity is predicted extremely well by Torricelli's law and that no velocity correction (like a "coefficient of velocity") is needed.

The problem remains how to determine the cross-section of the vena contracta. This is normally done by introducing a discharge coefficient which relates the discharge to the orifice's cross-section and Torricelli's law:

V ˙ real = μ A A v A with μ = A C A A {\displaystyle {\dot {V}}_{\text{real}}=\mu A_{A}v_{A}\quad {\text{with}}\quad \mu ={\frac {A_{C}}{A_{A}}}}

For low viscosity liquids (such as water) flowing out of a round hole in a tank, the discharge coefficient is in the order of 0.65. By discharging through a round tube or hose, the coefficient of discharge can be increased to over 0.9. For rectangular openings, the discharge coefficient can be up to 0.67, depending on the height-width ratio.

Applications

Horizontal distance covered by the jet of liquid

If h {\displaystyle h} is height of the orifice above the ground and H {\displaystyle H} is height of the liquid column from the ground (height of liquid's surface), then the horizontal distance covered by the jet of liquid to reach the same level as the base of the liquid column can be easily derived. Since h {\displaystyle h} be the vertical height traveled by a particle of jet stream, we have from the laws of falling body

h = 1 2 g t 2 t = 2 h g , {\displaystyle h={\frac {1}{2}}gt^{2}\quad \Rightarrow \quad t={\sqrt {\frac {2h}{g}}},}

where t {\displaystyle t} is the time taken by the jet particle to fall from the orifice to the ground. If the horizontal efflux velocity is v {\displaystyle v} , then the horizontal distance traveled by the jet particle during the time duration t {\displaystyle t} is

D = v t = v 2 h g . {\displaystyle D=vt=v{\sqrt {\frac {2h}{g}}}.}

Since the water level is H h {\displaystyle H-h} above the orifice, the horizontal efflux velocity v = 2 g ( H h ) , {\displaystyle v={\sqrt {2g(H-h)}},} as given by Torricelli's law. Thus, we have from the two equations

D = 2 h ( H h ) . {\displaystyle D=2{\sqrt {h(H-h)}}.}

The location of the orifice that yields the maximum horizontal range is obtained by differentiating the above equation for D {\displaystyle D} with respect to h {\displaystyle h} , and solving d D / d h = 0 {\displaystyle dD/dh=0} . Here we have

d D d h = H 2 h h ( H h ) . {\displaystyle {\frac {dD}{dh}}={\frac {H-2h}{\sqrt {h(H-h)}}}.}

Solving d D / d h = 0 , {\displaystyle dD/dh=0,} we obtain

h = H 2 , {\displaystyle h^{*}={\frac {H}{2}},}

and the maximum range

D max = H . {\displaystyle D_{\max }=H.}

Clepsydra problem

An inflow clepsydra

A clepsydra is a clock that measures time by the flow of water. It consists of a pot with a small hole at the bottom through which the water can escape. The amount of escaping water gives the measure of time. As given by the Torricelli's law, the rate of efflux through the hole depends on the height of the water; and as the water level diminishes, the discharge is not uniform. A simple solution is to keep the height of the water constant. This can be attained by letting a constant stream of water flow into the vessel, the overflow of which is allowed to escape from the top, from another hole. Thus having a constant height, the discharging water from the bottom can be collected in another cylindrical vessel with uniform graduation to measure time. This is an inflow clepsydra.

Alternatively, by carefully selecting the shape of the vessel, the water level in the vessel can be made to decrease at constant rate. By measuring the level of water remaining in the vessel, the time can be measured with uniform graduation. This is an example of outflow clepsydra. Since the water outflow rate is higher when the water level is higher (due to more pressure), the fluid's volume should be more than a simple cylinder when the water level is high. That is, the radius should be larger when the water level is higher. Let the radius r {\displaystyle r} increase with the height of the water level h {\displaystyle h} above the exit hole of area a . {\displaystyle a.} That is, r = f ( h ) {\displaystyle r=f(h)} . We want to find the radius such that the water level has a constant rate of decrease, i.e. d h / d t = c {\displaystyle dh/dt=c} .

At a given water level h {\displaystyle h} , the water surface area is A = π r 2 {\displaystyle A=\pi r^{2}} . The instantaneous rate of change in water volume is

d V d t = A d h d t = π r 2 c . {\displaystyle {\frac {dV}{dt}}=A{\frac {dh}{dt}}=\pi r^{2}c.}

From Torricelli's law, the rate of outflow is

d V d t = A A v = A A 2 g h , {\displaystyle {\frac {dV}{dt}}=A_{A}v=A_{A}{\sqrt {2gh}},}

From these two equations,

A A 2 g h = π r 2 c h = π 2 c 2 2 g A A 2 r 4 . {\displaystyle {\begin{aligned}A_{A}{\sqrt {2gh}}&=\pi r^{2}c\\\Rightarrow \quad h&={\frac {\pi ^{2}c^{2}}{2gA_{A}^{2}}}r^{4}.\end{aligned}}}

Thus, the radius of the container should change in proportion to the quartic root of its height, r h 4 . {\displaystyle r\propto {\sqrt{h}}.}

Likewise, if the shape of the vessel of the outflow clepsydra cannot be modified according to the above specification, then we need to use non-uniform graduation to measure time. The emptying time formula above tells us the time should be calibrated as the square root of the discharged water height, T h . {\displaystyle T\propto {\sqrt {h}}.} More precisely,

Δ t = A A A 2 g ( h 1 h 2 ) {\displaystyle \Delta t={\frac {A}{A_{A}}}{\sqrt {\frac {2}{g}}}({\sqrt {h_{1}}}-{\sqrt {h_{2}}})}

where Δ t {\displaystyle \Delta t} is the time taken by the water level to fall from the height of h 1 {\displaystyle h_{1}} to height of h 2 {\displaystyle h_{2}} .

Torricelli's original derivation

Figures from Evangelista Torricelli's Opera Geometrica (1644) describing the derivation of his famous outflow formula: (a) One tube filled up with water from A to B. (b) In two connected tubes the water lift up to the same height. (c) When the tube C is removed, the water should rise up to the height D. Due to friction effects the water only rises to the point C.

Evangelista Torricelli's original derivation can be found in the second book 'De motu aquarum' of his 'Opera Geometrica'. He starts a tube AB (Figure (a)) filled up with water to the level A. Then a narrow opening is drilled at the level of B and connected to a second vertical tube BC. Due to the hydrostatic principle of communicating vessels the water lifts up to the same filling level AC in both tubes (Figure (b)). When finally the tube BC is removed (Figure (c)) the water should again lift up to this height, which is named AD in Figure (c). The reason for that behavior is the fact that a droplet's falling velocity from a height A to B is equal to the initial velocity that is needed to lift up a droplet from B to A.

When performing such an experiment only the height C (instead of D in figure (c)) will be reached which contradicts the proposed theory. Torricelli attributes this defect to the air resistance and to the fact that the descending drops collide with ascending drops.

Torricelli's argumentation is, as a matter of fact, wrong because the pressure in free jet is the surrounding atmospheric pressure, while the pressure in a communicating vessel is the hydrostatic pressure. At that time the concept of pressure was unknown.

See also

References

  1. Resnick and Halliday (1966) Physics, Combined edition, Chapter 18, Problem 9. Wiley Toppan
  2. Spouting cylinder fluid flow.
  3. J.H. Lienhard (V) and J.H. Lienhard (IV): Velocity Coefficients for Free Jets from Sharp-Edged Orifices, Journal of Fluids Engineering 106,13-17,1984, https://doi.org/10.1115/1.3242391
  4. tec-science (2019-11-21). "Discharge of liquids (Torricelli's law)". tec-science. Retrieved 2019-12-08.
  5. A. Malcherek: History of the Torricelli Principle and a New Outflow Theory, Journal of Hydraulic Engineering 142(11),1-7,2016, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001232)

Further reading

Categories: