Misplaced Pages

Dendrochronology

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Tree ring analysis) Method of dating based on the analysis of patterns of tree rings
The growth rings of a tree at Bristol Zoo, England. Each ring represents one year; the outside rings, near the bark, are the youngest
A "tree cookie" cross-section of a Coast Douglas-fir tree displayed in the Royal Ontario Museum. The tree was over 500 years old when it was cut down in British Columbia in the 1890s. The markings indicating historical events were added in the 1920s.

Dendrochronology (or tree-ring dating) is the scientific method of dating tree rings (also called growth rings) to the exact year they were formed in a tree. As well as dating them, this can give data for dendroclimatology, the study of climate and atmospheric conditions during different periods in history from the wood of old trees. Dendrochronology derives from the Ancient Greek dendron (δένδρον), meaning "tree", khronos (χρόνος), meaning "time", and -logia (-λογία), "the study of".

Dendrochronology is useful for determining the precise age of samples, especially those that are too recent for radiocarbon dating, which always produces a range rather than an exact date. However, for a precise date of the death of the tree a full sample to the edge is needed, which most trimmed timber will not provide. It also gives data on the timing of events and rates of change in the environment (most prominently climate) and also in wood found in archaeology or works of art and architecture, such as old panel paintings. It is also used as a check in radiocarbon dating to calibrate radiocarbon ages.

New growth in trees occurs in a layer of cells near the bark. A tree's growth rate changes in a predictable pattern throughout the year in response to seasonal climate changes, resulting in visible growth rings. Each ring marks a complete cycle of seasons, or one year, in the tree's life. As of 2023, securely dated tree-ring data for Germany and Ireland are available going back 13,910 years. A new method is based on measuring variations in oxygen isotopes in each ring, and this 'isotope dendrochronology' can yield results on samples which are not suitable for traditional dendrochronology due to too few or too similar rings. Some regions have "floating sequences", with gaps which mean that earlier periods can only be approximately dated. As of 2024, only three areas have continuous sequences going back to prehistoric times, the foothills of the Northern Alps, the southwestern United States and the British Isles. Miyake events, which are major spikes in cosmic rays at known dates, are visible in trees rings and can fix the dating of a floating sequence.

History

The Greek botanist Theophrastus (c. 371 – c. 287 BC) first mentioned that the wood of trees has rings. In his Trattato della Pittura (Treatise on Painting), Leonardo da Vinci (1452–1519) was the first person to mention that trees form rings annually and that their thickness is determined by the conditions under which they grew. In 1737, French investigators Henri-Louis Duhamel du Monceau and Georges-Louis Leclerc de Buffon examined the effect of growing conditions on the shape of tree rings. They found that in 1709, a severe winter produced a distinctly dark tree ring, which served as a reference for subsequent European naturalists. In the U.S., Alexander Catlin Twining (1801–1884) suggested in 1833 that patterns among tree rings could be used to synchronize the dendrochronology of various trees and thereby to reconstruct past climates across entire regions. The English polymath Charles Babbage proposed using dendrochronology to date the remains of trees in peat bogs or even in geological strata (1835, 1838).

During the latter half of the nineteenth century, the scientific study of tree rings and the application of dendrochronology began. In 1859, the German-American Jacob Kuechler (1823–1893) used crossdating to examine oaks (Quercus stellata) in order to study the record of climate in western Texas. In 1866, the German botanist, entomologist, and forester Julius Theodor Christian Ratzeburg (1801–1871) observed the effects on tree rings of defoliation caused by insect infestations. By 1882, this observation was already appearing in forestry textbooks. In the 1870s, the Dutch astronomer Jacobus Kapteyn (1851–1922) was using crossdating to reconstruct the climates of the Netherlands and Germany. In 1881, the Swiss-Austrian forester Arthur von Seckendorff-Gudent (1845–1886) was using crossdating. From 1869 to 1901, Robert Hartig (1839–1901), a German professor of forest pathology, wrote a series of papers on the anatomy and ecology of tree rings. In 1892, the Russian physicist Fedor Nikiforovich Shvedov [ro; ru; uk] (1841–1905) wrote that he had used patterns found in tree rings to predict droughts in 1882 and 1891.

During the first half of the twentieth century, the astronomer A. E. Douglass founded the Laboratory of Tree-Ring Research at the University of Arizona. Douglass sought to better understand cycles of sunspot activity and reasoned that changes in solar activity would affect climate patterns on earth, which would subsequently be recorded by tree-ring growth patterns (i.e., sunspots → climate → tree rings).

Methods

Drill for dendrochronology sampling and growth ring counting

Growth rings

"Tree ring" redirects here. Not to be confused with Tree ring (landscape feature). Further information: Wood
Diagram of secondary growth in a tree showing idealised vertical and horizontal sections. A new layer of wood is added in each growing season, thickening the stem, existing branches and roots, to form a growth ring.

Horizontal cross sections cut through the trunk of a tree can reveal growth rings, also referred to as tree rings or annual rings. Growth rings result from new growth in the vascular cambium, a layer of cells near the bark that botanists classify as a lateral meristem; this growth in diameter is known as secondary growth. Visible rings result from the change in growth speed through the seasons of the year; thus, critical for the title method, one ring generally marks the passage of one year in the life of the tree. Removal of the bark of the tree in a particular area may cause deformation of the rings as the plant overgrows the scar.

The rings are more visible in trees which have grown in temperate zones, where the seasons differ more markedly. The inner portion of a growth ring forms early in the growing season, when growth is comparatively rapid (hence the wood is less dense) and is known as "early wood" (or "spring wood", or "late-spring wood"); the outer portion is the "late wood" (sometimes termed "summer wood", often being produced in the summer, though sometimes in the autumn) and is denser.

Silver lime cross section showing annual rings.

Many trees in temperate zones produce one growth-ring each year, with the newest adjacent to the bark. Hence, for the entire period of a tree's life, a year-by-year record or ring pattern builds up that reflects the age of the tree and the climatic conditions in which the tree grew. Adequate moisture and a long growing season result in a wide ring, while a drought year may result in a very narrow one.

Direct reading of tree ring chronologies is a complex science, for several reasons. First, contrary to the single-ring-per-year paradigm, alternating poor and favorable conditions, such as mid-summer droughts, can result in several rings forming in a given year. In addition, particular tree species may present "missing rings", and this influences the selection of trees for study of long time-spans. For instance, missing rings are rare in oak and elm trees.

Critical to the science, trees from the same region tend to develop the same patterns of ring widths for a given period of chronological study. Researchers can compare and match these patterns ring-for-ring with patterns from trees which have grown at the same time in the same geographical zone (and therefore under similar climatic conditions). When one can match these tree-ring patterns across successive trees in the same locale, in overlapping fashion, chronologies can be built up—both for entire geographical regions and for sub-regions. Moreover, wood from ancient structures with known chronologies can be matched to the tree-ring data (a technique called 'cross-dating'), and the age of the wood can thereby be determined precisely. Dendrochronologists originally carried out cross-dating by visual inspection; more recently, they have harnessed computers to do the task, applying statistical techniques to assess the matching. To eliminate individual variations in tree-ring growth, dendrochronologists take the smoothed average of the tree-ring widths of multiple tree-samples to build up a 'ring history', a process termed replication. A tree-ring history whose beginning- and end-dates are not known is called a 'floating chronology'. It can be anchored by cross-matching a section against another chronology (tree-ring history) whose dates are known.

A fully anchored and cross-matched chronology for oak and pine in central Europe extends back 12,460 years, and an oak chronology goes back 7,429 years in Ireland and 6,939 years in England. Comparison of radiocarbon and dendrochronological ages supports the consistency of these two independent dendrochronological sequences. Another fully anchored chronology that extends back 8,500 years exists for the bristlecone pine in the Southwest US (White Mountains of California).

Dendrochronological equation

A typical form of the function of the wood ring width in accordance with the dendrochronological equation
A typical form of the function of the wood ring (in accordance with the dendrochronological equation) with an increase in the width of wood ring at initial stage

The dendrochronological equation defines the law of growth of tree rings. The equation was proposed by Russian biophysicist Alexandr N. Tetearing in his work "Theory of populations" in the form:

Δ L ( t ) = 1 k v ρ 1 3 d ( M 1 3 ( t ) ) d t , {\displaystyle \Delta L(t)={\frac {1}{k_{v}\,\rho ^{\frac {1}{3}}}}\,{\frac {d\left(M^{\frac {1}{3}}(t)\right)}{dt}},}

where ΔL is width of annual ring, t is time (in years), ρ is density of wood, kv is some coefficient, M(t) is function of mass growth of the tree.

Ignoring the natural sinusoidal oscillations in tree mass, the formula for the changes in the annual ring width is:

Δ L ( t ) = c 1 e a 1 t + c 2 e a 2 t 3 k v ρ 1 3 ( c 4 + c 1 e a 1 t + c 2 e a 2 t ) 2 3 {\displaystyle \Delta L(t)=-{\frac {c_{1}e^{-a_{1}t}+c_{2}e^{-a_{2}t}}{3k_{v}\rho ^{\frac {1}{3}}\left(c_{4}+c_{1}e^{-a_{1}t}+c_{2}e^{-a_{2}t}\right)^{\frac {2}{3}}}}}

where c1, c2, and c4 are some coefficients, a1 and a2 are positive constants.

The formula is useful for correct approximation of samples data before data normalization procedure. The typical forms of the function ΔL(t) of annual growth of wood ring are shown in the figures.

Sampling and dating

Dendrochronology allows specimens of once-living material to be accurately dated to a specific year. Dates are often represented as estimated calendar years B.P., for before present, where "present" refers to 1 January 1950.

Timber core samples are sampled and used to measure the width of annual growth rings; by taking samples from different sites within a particular region, researchers can build a comprehensive historical sequence. The techniques of dendrochronology are more consistent in areas where trees grew in marginal conditions such as aridity or semi-aridity where the ring growth is more sensitive to the environment, rather than in humid areas where tree-ring growth is more uniform (complacent). In addition, some genera of trees are more suitable than others for this type of analysis. For instance, the bristlecone pine is exceptionally long-lived and slow growing, and has been used extensively for chronologies; still-living and dead specimens of this species provide tree-ring patterns going back thousands of years, in some regions more than 10,000 years. Currently, the maximum span for fully anchored chronology is a little over 11,000 years B.P.

IntCal20 is the 2020 "Radiocarbon Age Calibration Curve", which provides a calibrated carbon 14 dated sequence going back 55,000 years. The most recent part, going back 13,900 years, is based on tree rings.

Reference sequences

European chronologies derived from wooden structures initially found it difficult to bridge the gap in the fourteenth century when there was a building hiatus, which coincided with the Black Death. However, there do exist unbroken chronologies dating back to prehistoric times, for example the Danish chronology dating back to 352 BC.

Given a sample of wood, the variation of the tree-ring growths not only provides a match by year, but can also match location because climate varies from place to place. This makes it possible to determine the source of ships as well as smaller artifacts made from wood, but which were transported long distances, such as panels for paintings and ship timbers.

Miyake events

Miyake events, such as the ones in 774–775 and 993–994, can provide fixed reference points in an unknown time sequence as they are due to cosmic radiation. As they appear as spikes in carbon 14 in tree rings for that year all round the world, they can be used to date historical events to the year. For example, wooden houses in the Viking site at L'Anse aux Meadows in Newfoundland were dated by finding the layer with the 993 spike, which showed that the wood is from a tree felled in 1021. Researchers at the University of Bern have provided exact dating of a floating sequence in a Neolithic settlement in northern Greece by tying it to a spike in cosmogenic radiocarbon in 5259 BC.

Frost rings

Frost ring is a term used to designate a layer of deformed, collapsed tracheids and traumatic parenchyma cells in tree ring analysis. They are formed when air temperature falls below freezing during a period of cambial activity. They can be used in dendrochronology to indicate years that are colder than usual.

Applications

Radiocarbon dating calibration

Dates from dendrochronology can be used as a calibration and check of radiocarbon dating. This can be done by checking radiocarbon dates against long master sequences, with Californian bristle-cone pines in Arizona being used to develop this method of calibration as the longevity of the trees (up to c.4900 years) in addition to the use of dead samples meant a long, unbroken tree ring sequence could be developed (dating back to c. 6700 BC). Additional studies of European oak trees, such as the master sequence in Germany that dates back to c. 8500 BC, can also be used to back up and further calibrate radiocarbon dates.

Climatology

Main article: dendroclimatology

Dendroclimatology is the science of determining past climates from trees primarily from the properties of the annual tree rings. Other properties of the annual rings, such as maximum latewood density (MXD) have been shown to be better proxies than simple ring width. Using tree rings, scientists have estimated many local climates for hundreds to thousands of years previous.

Art history

Dendrochronology has become important to art historians in the dating of panel paintings. However, unlike analysis of samples from buildings, which are typically sent to a laboratory, wooden supports for paintings usually have to be measured in a museum conservation department, which places limitations on the techniques that can be used.

In addition to dating, dendrochronology can also provide information as to the source of the panel. Many Early Netherlandish paintings have turned out to be painted on panels of "Baltic oak" shipped from the Vistula region via ports of the Hanseatic League. Oak panels were used in a number of northern countries such as England, France and Germany. Wooden supports other than oak were rarely used by Netherlandish painters.

A portrait of Mary, Queen of Scots, determined to date from the sixteenth century by dendrochronology

Since panels of seasoned wood were used, an uncertain number of years has to be allowed for seasoning when estimating dates. Panels were trimmed of the outer rings, and often each panel only uses a small part of the radius of the trunk. Consequently, dating studies usually result in a terminus post quem (earliest possible) date, and a tentative date for the arrival of a seasoned raw panel using assumptions as to these factors. As a result of establishing numerous sequences, it was possible to date 85–90% of the 250 paintings from the fourteenth to seventeenth century analysed between 1971 and 1982; by now a much greater number have been analysed.

A portrait of Mary, Queen of Scots in the National Portrait Gallery, London was believed to be an eighteenth-century copy. However, dendrochronology revealed that the wood dated from the second half of the sixteenth century. It is now regarded as an original sixteenth-century painting by an unknown artist.

On the other hand, dendrochronology was applied to four paintings depicting the same subject, that of Christ expelling the money-lenders from the Temple. The results showed that the age of the wood was too late for any of them to have been painted by Hieronymus Bosch.

While dendrochronology has become an important tool for dating oak panels, it is not effective in dating the poplar panels often used by Italian painters because of the erratic growth rings in poplar.

The sixteenth century saw a gradual replacement of wooden panels by canvas as the support for paintings, which means the technique is less often applicable to later paintings. In addition, many panel paintings were transferred onto canvas or other supports during the nineteenth and twentieth centuries.

Archaeology

Main article: Dendroarchaeology

The dating of buildings with wooden structures and components is also done by dendrochronology; dendroarchaeology is the term for the application of dendrochronology in archaeology. While archaeologists can date wood and when it was felled, it may be difficult to definitively determine the age of a building or structure in which the wood was used; the wood could have been reused from an older structure, may have been felled and left for many years before use, or could have been used to replace a damaged piece of wood. The dating of building via dendrochronology thus requires knowledge of the history of building technology. Many prehistoric forms of buildings used "posts" that were whole young tree trunks; where the bottom of the post has survived in the ground these can be especially useful for dating.

Examples:

  • The Post Track and Sweet Track, ancient timber trackways in the Somerset levels, England, have been dated to 3838 BC and 3807 BC.
  • Navan Fort where in Prehistoric Ireland a large structure was built with more than two hundred posts. The central oak post was felled in 95 BC.
  • The Fairbanks House in Dedham, Massachusetts. While the house had long been claimed to have been built c. 1640 (and being the oldest wood-framed house in North America), core samples of wood taken from a summer beam confirmed the wood was from an oak tree felled in 1637–8, as wood was not seasoned before use in building at that time in New England. An additional sample from another beam yielded a date of 1641, thus confirming the house had been constructed starting in 1638 and finished sometime after 1641 .
  • The burial chamber of Gorm the Old, who died c. 958, was constructed from wood of timbers felled in 958.
  • Veliky Novgorod, where, between the tenth and the fifteenth century, numerous consecutive layers of wooden log pavement have been placed over the accumulating dirt.

Measurement platforms, software, and data formats

There are many different file formats used to store tree ring width data. Effort for standardisation was made with the development of TRiDaS. Further development led to the database software Tellervo, which is based on the new standard format whilst being able to import lots of different data formats. The desktop application can be attached to measurement devices and works with the database server that is installed separately.

Continuous sequence

Bard et al write in 2023: "The oldest tree-ring series are known as floating since, while their constituent rings can be counted to create a relative internal chronology, they cannot be dendro-matched with the main Holocene absolute chronology. However, 14C analyses performed at high resolution on overlapped absolute and floating tree-rings series enable one to link them almost absolutely and hence to extend the calibration on annual tree rings until ≈13 900 cal yr BP."

Related chronologies

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (November 2014) (Learn how and when to remove this message)

Herbchronology is the analysis of annual growth rings (or simply annual rings) in the secondary root xylem of perennial herbaceous plants. Similar seasonal patterns also occur in ice cores and in varves (layers of sediment deposition in a lake, river, or sea bed). The deposition pattern in the core will vary for a frozen-over lake versus an ice-free lake, and with the fineness of the sediment. Sclerochronology is the study of algae deposits.

Some columnar cacti also exhibit similar seasonal patterns in the isotopes of carbon and oxygen in their spines (acanthochronology). These are used for dating in a manner similar to dendrochronology, and such techniques are used in combination with dendrochronology, to plug gaps and to extend the range of the seasonal data available to archaeologists and paleoclimatologists.

A similar technique is used to estimate the age of fish stocks through the analysis of growth rings in the otolith bones.

See also

References

  1. The term "dendrochronology" was coined in 1928 by the American astronomer Andrew Ellicott Douglass (1867–1962). Douglass, A.E. (1928). Climatic Cycles and Tree Growth. Vol. II. A Study of the Annual Rings of Trees in relation to Climate and Solar Activity. Washington, D.C., USA: Carnegie Institute of Washington. p. 5. From p. 5: "One can see that in all this we are measuring the lapse of time by means of a slow-geared clock within trees. For this study the name "dendro-chronology" has been suggested, or "tree-time." "
  2. ^ Grissino-Mayer, Henri D. (n.d.), The Science of Tree Rings: Principles of Dendrochronology, Department of Geography, The University of Tennessee, archived from the original on November 4, 2016, retrieved October 23, 2016
  3. Van der Plecht, J; Bronck Ramsey, C; Heaton, T. J.; Scott, E. M.; Talamo, S (August 2020). "Recent Developments in Calibration for Archaeological and Environmental Samples". Radiocarbon. 62 (4): 1095–1117. Bibcode:2020Radcb..62.1095V. doi:10.1017/RDC.2020.22. hdl:11585/770537.
  4. Holliday, Trenton (2021). Cro-Magnon: The Story of the Last Ice Age People of Europe. New York: Columbia University Press. p. 44. ISBN 978-0-231-20497-2.
  5. Loader, Neil J.; Mccarroll, Danny; Miles, Daniel; Young, Giles H. F.; Davies, Darren; Ramsey, Christopher Bronk (August 2019). "Tree ring dating using oxygen isotopes: a master chronology for central England" (PDF). Journal of Quaternary Science. 34 (6): 475–490. Bibcode:2019JQS....34..475L. doi:10.1002/jqs.3115.
  6. ^ University of Bern (21 May 2024). "Researchers succeed for first time in accurately dating a 7,000-year-old prehistoric settlement using cosmic rays".
  7. Theophrastus with Arthur Hort, trans., Enquiry into Plants, volume 1 (London, England: William Heinemann, 1916), Book V, p. 423. From p. 423: "Moreover, the wood of the silver-fir has many layers, like an onion; there is always another beneath that which is visible, and the wood is composed of such layers throughout." Although many sources claim that Theophrastus recognized that trees form growth rings annually, this is not true.
  8. For the history of dendrochronology, see:
    • Studhalter, R. A. (April 1956). "Early History of Crossdating". Tree-Ring Bulletin. 21: 31–35. hdl:10150/259045. (Condensed from: Studhalter, R. A. (1955). "Tree Growth I. Some Historical Chapters". Botanical Review. 21 (1/3): 1–72. doi:10.1007/BF02872376. JSTOR 4353530. S2CID 37646970.
    • Studhalter, R. A.; Glock, Waldo S.; Agerter, Sharlene R. (1963). "Tree Growth: Some Historical Chapters in the Study of Diameter Growth". Botanical Review. 29 (3): 245–365. doi:10.1007/BF02860823. JSTOR 4353671. S2CID 44817056.
    • James H. Speer, Fundamentals of Tree-ring Research (Tucson, Arizona: University of Arizona Press, 2010), Chapter 3: History of Dendrochronology, pp. 28–42.
  9. See:
    • Leonardo da Vinci, Trattato della Pittura ... (Rome, (Italy): 1817), p. 396. From p. 396: "Li circuli delli rami degli alberi segati mostrano il numero delli suoi anni, e quali furono più umidi o più secchi la maggiore o minore loro grossezza." (The rings around the branches of trees that have been sawed show the number of its years and which were the wetter or drier the more or less their thickness.)
    • Sarton, George (1954) "Queries and Answers: Query 145. — When was tree-ring analysis discovered?", Isis, 45 (4): 383–384. Sarton also cites a diary of the French writer Michel de Montaigne, who in 1581 was touring Italy, where he encountered a carpenter who explained that trees form a new ring each year.
  10. du Hamel & de Buffon (27 February 1737) "De la cause de l'excentricité des couches ligneuses qu'on apperçoit quand on coupe horisontalement le tronc d'un arbre ; de l'inégalité d'épaisseur, & de different nombre de ces couches, tant dans le bois formé que dans l'aubier" Archived 2015-05-09 at the Wayback Machine (On the cause of the eccentricity of the woody layers that one sees when one horizontally cuts the trunk of a tree ; on the unequal thickness, and on the different number of layers in the mature wood as well as in the sapwood), Mémoires de l'Académie royale des science, in: Histoire de l'Académie royale des sciences ..., pp. 121–134.
  11. du Hamel & de Buffon (4 May 1737) "Observations des différents effets que produisent sur les végétaux les grandes gelées d'hiver et les petites gelées du printemps" Archived 2015-05-09 at the Wayback Machine (Observations on the different effects that the severe frosts of winter and the minor frosts of spring produce on plants), Mémoires de l'Académie royale des science, in: Histoire de l'Académie royale des sciences ..., pp. 273–298. Studhalter (1956), p. 33, stated that Carl Linnaeus (1745, 1751) in Sweden, Friedrich August Ludwig von Burgsdorf (1783) in Germany, and Alphonse de Candolle (1839–1840) in France subsequently observed the same tree ring in their samples.
  12. Alexander C. Twining (1833) "On the growth of timber — Extract of a letter from Mr. Alexander C. Twining, to the Editor, dated Albany, April 9, 1833" Archived May 14, 2015, at the Wayback Machine, The American Journal of Science, 24 : 391–393.
  13. See:
  14. See:
  15. J. T. C. Ratzeburg, Die Waldverderbniss oder dauernder Schade, welcher durch Insektenfrass, Schälen, Schlagen und Verbeissen an lebenenden Waldbäumen entsteht. , vol. 1, (Berlin, (Germany): Nicolaische Verlag, 1866), p. 10. Archived 2015-10-01 at the Wayback Machine From p. 10: "Die beiden, auf Taf. 42, Fig. 6 (mit dem Durchschnitt Fig. 7) und Fig. 1 (mit dem Durchschnitt Fig. 2) dargestellten Zweige hatten in dem Frassjahre 1862 einen doppelt so starken Jahrring als in dem vorhergehenden angelegt, und auch der (hier nicht abgebildete) Ring des jährigen Triebes war bei den gefressenen stärker as der eines nicht gefressenen." (Both branches that are presented in plate 42, fig. 6 (with the cross-section in fig. 7) and fig. 1 (with the cross-section in fig. 2) had produced, in the defoliation year of 1862, a growth ring that was twice as strong as in the preceding one, and so was the ring of the year-old shoot (not illustrated here) stronger in the case of the defoliated tree than one that was not defoliated.)
  16. Franklin B. Hough, The Elements of Forestry (Cincinnati, Ohio: Robert Clarke and Co., 1882), pp. 69–70. Archived 2015-10-01 at the Wayback Machine
  17. Kapteyn, J. C. (1914) "Tree-growth and meteorological factors", Recueil des Travaux Botaniques Néerlandais, 11 : 70–93.
  18. See:
    • Seckendorff, Arthur von (1881) "Beiträge zur Kenntnis der Schwarzföhre Pinus austriaca Höss" , Mitteilung aus dem forstlichen Versuchswesen Oesterreichs (Vienna, Austria: Carl Gerold Verlag, 1881), 66 pages.
    • Speer (2010), p. 36.
  19. Speer (2010), p. 36–37.
  20. See:
    • Шведов, Ф. (Shvedov, F.) (1892) "Дерево, как летопись засух" (The tree as a record of drought), Метеорологический Вестник (Meteorological Herald), (5) : 163–178.
    • Speer (2010), p. 37.
  21. "Early wood" is used in preference to "spring wood", as the latter term may not correspond to that time of year in climates where early wood is formed in the early summer (e.g. Canada) or in autumn, as in some Mediterranean species.
  22. Capon, Brian (2005). Botany for Gardeners (2nd ed.). Portland, OR: Timber Publishing. pp. 66–67. ISBN 978-0-88192-655-2.
  23. The only recorded instance of a missing ring in oak trees occurred in the year 1816, also known as the "Year Without a Summer".Lori Martinez (1996). "Useful Tree Species for Tree-Ring Dating". Archived from the original on 2008-11-08. Retrieved 2008-11-08.
  24. Friedrich, Michael; Remmele, Sabine; Kromer, Bernd; Hofmann, Jutta; Spurk, Marco; Felix Kaiser, Klaus; Orcel, Christian; Küppers, Manfred (2004). "The 12,460-Year Hohenheim Oak and Pine Tree-Ring Chronology from Central Europe—A Unique Annual Record for Radiocarbon Calibration and Paleoenvironment Reconstructions" (PDF). Radiocarbon. 46 (3): 1111–1122. Bibcode:2004Radcb..46.1111F. doi:10.1017/S003382220003304X. S2CID 53343999. Archived (PDF) from the original on 2022-10-09.
  25. Walker, Mike (2013). "5.2.3 Dendrochronological Series". Quaternary Dating Methods. John Wiley and Sons. ISBN 9781118700099. Archived from the original on 2016-11-28.
  26. Stuiver, Minze; Kromer, Bernd; Becker, Bernd; Ferguson, C W (1986). "Radiocarbon Age Calibration back to 13,300 Years BP and the
    C Age Matching of the German Oak and US Bristlecone Pine Chronologies"
    . Radiocarbon. 28 (2B): 969–979. Bibcode:1986Radcb..28..969S. doi:10.1017/S0033822200060252. hdl:10150/652767.
  27. Ferguson, C. W.; Graybill, D. A. (1983). "Dendrochronology of Bristlecone Pine: A Progress Report". Radiocarbon. 25 (2): 287–288. Bibcode:1983Radcb..25..287F. doi:10.1017/S0033822200005592. hdl:10150/652656.
  28. Alexandr N. Tetearing (2012). Theory of populations. Moscow: SSO Foundation. p. 583. ISBN 978-1-365-56080-4.
  29. ^ Renfrew Colin; Bahn Paul (2004). Archaeology: Theories, Methods and Practice (4th ed.). London: Thames & Hudson. pp. 144–5. ISBN 978-0-500-28441-4.
  30. "Bibliography of Dendrochronology". Switzerland: ETH Forest Snow and Landscape Research. Archived from the original on 2010-08-04. Retrieved 2010-08-08.
  31. Reimer, Paula; et al. (12 August 2020). "The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP)". Radiocarbon. 62 (4): 725–757. Bibcode:2020Radcb..62..725R. doi:10.1017/RDC.2020.41. hdl:11585/770531. S2CID 216215614.
  32. Baillie Mike (1997). A Slice Through Time. London: Batsford. p. 124. ISBN 978-0-7134-7654-5.
  33. "WM Trædatering" [WM Tree dating]. skalk.dk (in Danish). Archived from the original on 21 December 2014. Retrieved 15 May 2015.
  34. ^ Andrej Maczkowski et al, "Absolute dating of the European Neolithic using the 5259 BC rapid 14C excursion", Nature Communications, 2024 doi:10.1038/s41467-024-48402-1
  35. Price, Michael (13 April 2023). "Marking time: Radiocarbon timestamps left in ancient tree rings by cosmic ray bombardments can date historical events with unprecedented precision". Science. A previous version "Marking time: Cosmic ray storms can pin precise dates on history from ancient Egypt to the Vikings" appeared in Science, Vol 380, Issue 6641.
  36. Kuitems, Margot; et al. (20 October 2021). "Evidence for European presence in the Americas in AD 1021" (PDF). Nature. 601 (7893): 388–391. doi:10.1038/s41586-021-03972-8. PMC 8770119. PMID 34671168. S2CID 239051036. Archived (PDF) from the original on 2022-10-09.
  37. David Montwé; et al. (Apr 23, 2018). "Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration". Nature Communications. 9 (1): 1574. Bibcode:2018NatCo...9.1574M. doi:10.1038/s41467-018-04039-5. PMC 5913219. PMID 29686289.
  38. Renfrew, Colin; Bahn, Paul (2016). Archaeology: Theories, Methods and Practice (7th ed.). London, WCIV 7QX: Thames & Hudson. p. 144. ISBN 978-0-500-29210-5.{{cite book}}: CS1 maint: location (link)
  39. Sheppard, Paul R. (May 2010). "Dendroclimatology: extracting climate from trees: Dendroclimatology". Wiley Interdisciplinary Reviews: Climate Change. 1 (3): 343–352. doi:10.1002/wcc.42. S2CID 129124697.
  40. English Heritage Guide to Dendrochronology Archived 2013-10-23 at the Wayback Machine
  41. Spronk, Ron (1996). "More than Meets the Eye: An Introduction to Technical Examination of Early Netherlandish Paintings at the Fogg Art Museum". Harvard University Art Museums Bulletin. 5 (1): 1–64. JSTOR 4301542.
  42. Peter Ian Kuniholm, Dendrochronology (Tree-Ring Dating) of Panel Paintings Archived 2013-10-17 at the Wayback Machine Cornell University
  43. Taft, W. Stanley; Mayer, James W.; Newman, Richard; Kuniholm, Peter Ian; Stulik, Dusan (2000). "Dendrochronology (Tree-Ring Dating) of Panel Paintings". The Science of Paintings. Springer. pp. 206–215. ISBN 978-0-387-98722-4. Archived from the original on 2017-04-22.
  44. Fletcher, John (1982). "Panel Examination and Dendrochronology". The J. Paul Getty Museum Journal. 10: 39–44. JSTOR 4166459.
  45. "Mary, Queen of Scots". National Portrait Gallery. Dendrochronology. Archived from the original on 2013-10-17.
  46. Läänelaid, Alar (June 19, 2013). "Tree Rings, the Barcodes of Nature, Illuminate Art History". Atomium Culture. Il Sole 24 Ore. Archived from the original on 2013-10-18.
  47. "Dendrochronology". The National Gallery. Archived from the original on 2013-10-17.
  48. "Panel Paintings Initiative". Getty. Archived from the original on 2013-11-23.
  49. ^ Sawyer, Peter; Sawyer, Birgit (1993). Medieval Scandinavia: from conversion to Reformation, circa 800–1500. The Nordic Series. Vol. 17. University of Minnesota Press. p. 6. ISBN 978-0-8166-1739-5. OCLC 489584487. Archived from the original on 2015-05-18.
  50. Brunning, Richard (February 2001). "The Somerset Levels". Current Archaeology. XV (4) (172 (Special issue on Wetlands)): 139–143.
  51. Lynn, Chris (2003). Navan Fort: Archaeology and Myth. Spain: Wordwell Books. ISBN 978-1-869857-67-7.
  52. "A Grand House in 17th-Century New England". Fairbanks House Historical Site. Archived from the original on March 16, 2012. Retrieved May 27, 2012.
  53. "The Royal Lineage – The Danish Monarchy". kongehuset.dk. Archived from the original on 6 July 2015. Retrieved 15 May 2015.
  54. "Я послал тебе бересту (Янин В.Л.)".
  55. TRiDaS website
  56. Jansma, Esther (30 November 2009). "TRiDaS 1.1: The tree-ring data standard" (PDF). Archived (PDF) from the original on 2011-04-28. Retrieved 9 February 2021.
  57. Tellervo website
  58. Brewer, Peter W. (2014). "Data Management in Dendroarchaeology Using Tellervo". Radiocarbon. 56 (4): S79–S83. Bibcode:2014Radcb..56S..79B. doi:10.2458/azu_rc.56.18320. hdl:10150/630521.
  59. Bard, Edouard; et al. (9 October 2023). "A radiocarbon spike at 14 300 cal yr BP in subfossil trees provides the impulse response function of the global carbon cycle during the Late Glacial". Philosophical Transactions A. 381 (2261). Bibcode:2023RSPTA.38120206B. doi:10.1098/rsta.2022.0206. PMC 10586540. PMID 37807686.

External links

Scholia has a profile for dendrochronology (Q80205).
Forestry
Types
Ecology and
management
Environmental
topics
Industries
Occupations
Chronology
Key topics
Calendar eras
Regnal year
Era names
Calendars
Pre-Julian / Julian
Gregorian
Astronomical
Others
Astronomic time
Geologic time
Concepts
Standards
Methods
Chronological
dating
Absolute dating
Relative dating
Genetic methods
Linguistic methods
Related topics
Categories: