Misplaced Pages

Triakis truncated tetrahedron

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Not to be confused with truncated triakis tetrahedron. Space-filling polyhedron with 16 faces
Triakis truncated tetrahedron
TypePlesiohedron
Faces4 hexagons
12 isosceles triangles
Edges30
Vertices16
Conway notationk3tT
Dual polyhedron16|Order-3 truncated triakis tetrahedron
Propertiesconvex

In geometry, the triakis truncated tetrahedron is a convex polyhedron made from 4 hexagons and 12 isosceles triangles. It can be used to tessellate three-dimensional space, making the triakis truncated tetrahedral honeycomb.

The triakis truncated tetrahedron is the shape of the Voronoi cell of the carbon atoms in diamond, which lie on the diamond cubic crystal structure. As the Voronoi cell of a symmetric space pattern, it is a plesiohedron.

Construction

Triakis truncated tetrahedral honeycomb

For space-filling, the triakis truncated tetrahedron can be constructed as follows:

  1. Truncate a regular tetrahedron such that the big faces are regular hexagons.
  2. Add an extra vertex at the center of each of the four smaller tetrahedra that were removed.

See also

References

  1. Conway, John H.; Burgiel, Heidi; Goodman-Strauss, Chaim (2008). The Symmetries of Things. p. 332. ISBN 978-1568812205.
  2. Grünbaum, B; Shephard, G. C. (1980). "Tilings with Congruent Tiles". Bull. Amer. Math. Soc. 3 (3): 951–973. doi:10.1090/s0273-0979-1980-14827-2.
  3. Föppl, L. (1914). "Der Fundamentalbereich des Diamantgitters". Phys. Z. 15: 191–193.
  4. Conway, John. "Voronoi Polyhedron". geometry.puzzles. Retrieved 20 September 2012.
  5. Grünbaum, Branko; Shephard, G. C. (1980), "Tilings with congruent tiles", Bulletin of the American Mathematical Society, New Series, 3 (3): 951–973, doi:10.1090/S0273-0979-1980-14827-2, MR 0585178.


Stub icon

This polyhedron-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: