Misplaced Pages

Ubiquitin C

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from UBC (gene))

Mammalian protein found in humans
UBC
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

1C3T, 1CMX, 1D3Z, 1F9J, 1FXT, 1G6J, 1GJZ, 1NBF, 1OGW, 1Q5W, 1S1Q, 1SIF, 1TBE, 1UBI, 1UBQ, 1UD7, 1XD3, 1XQQ, 1YX5, 1YX6, 1ZGU, 2AYO, 2BGF, 2DEN, 2FUH, 2G45, 2GBJ, 2GBK, 2GBM, 2GBN, 2GBR, 2GMI, 2HTH, 2IBI, 2J7Q, 2JF5, 2JRI, 2JY6, 2JZZ, 2K25, 2K6D, 2K8B, 2K8C, 2KDF, 2KJH, 2KLG, 2KN5, 2KX0, 2L3Z, 2LD9, 2LVO, 2LVP, 2LVQ, 2LZ6, 2MBO, 2MBQ, 2MCN, 2MI8, 2MJ5, 2MOR, 2MRE, 2MWS, 2N2K, 2NR2, 2O6V, 2OJR, 2PE9, 2PEA, 2RR9, 2RU6, 2W9N, 2WDT, 2XEW, 2Z59, 2ZCB, 2ZVN, 2ZVO, 3A33, 3ALB, 3AUL, 3B08, 3B0A, 3BY4, 3C0R, 3DVG, 3DVN, 3EEC, 3EFU, 3EHV, 3H7P, 3H7S, 3HM3, 3IFW, 3IHP, 3JSV, 3JVZ, 3JW0, 3K9O, 3K9P, 3KVF, 3KW5, 3LDZ, 3MHS, 3MTN, 3N30, 3N32, 3N3K, 3NS8, 3O65, 3OFI, 3OJ4, 3ONS, 3PRM, 3PT2, 3PTF, 3Q3F, 3RUL, 3TMP, 3U30, 3UGB, 3V6C, 3V6E, 3VFK, 3VUW, 3VUX, 3VUY, 3WXE, 3WXF, 3ZNI, 3ZNZ, 4AUQ, 4BOS, 4BOZ, 4BVU, 4DDG, 4DDI, 4DHJ, 4DHZ, 4FJV, 4HK2, 4HXD, 4I6L, 4I6N, 4IG7, 4IUM, 4JQW, 4K1R, 4K7S, 4K7U, 4K7W, 4KSK, 4KSL, 4LCD, 4LDT, 4MDK, 4MM3, 4MSM, 4MSQ, 4NQK, 4UN2, 4V3K, 4V3L, 5AIU, 4XOK, 5AF6, 5AF5, 5AF4, 4XOL, 5C7J, 5C7M, 5E6J, 4ZQS, 4AP4,%%s4AP4

Identifiers
AliasesUBC, HMG20, Ubiquitin C
External IDsOMIM: 191340; MGI: 98889; HomoloGene: 128418; GeneCards: UBC; OMA:UBC - orthologs
Gene location (Human)
Chromosome 12 (human)
Chr.Chromosome 12 (human)
Chromosome 12 (human)Genomic location for UBCGenomic location for UBC
Band12q24.31Start124,911,604 bp
End124,917,368 bp
Gene location (Mouse)
Chromosome 5 (mouse)
Chr.Chromosome 5 (mouse)
Chromosome 5 (mouse)Genomic location for UBCGenomic location for UBC
Band5 G1.1|5 64.18 cMStart125,463,029 bp
End125,467,266 bp
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • olfactory bulb

  • Brodmann area 46

  • pericardium

  • vena cava

  • cerebellar vermis

  • postcentral gyrus

  • spinal ganglia

  • trigeminal ganglion

  • lateral nuclear group of thalamus

  • frontal pole
Top expressed in
  • granulocyte

  • right kidney

  • endothelial cell of lymphatic vessel

  • temporal muscle

  • dentate gyrus of hippocampal formation granule cell

  • muscle of thigh

  • triceps brachii muscle

  • central gray substance of midbrain

  • sternocleidomastoid muscle

  • calvaria
More reference expression data
BioGPS


More reference expression data
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

7316

22190

Ensembl

ENSG00000150991

ENSMUSG00000008348

UniProt

P0CG48

P0CG50

RefSeq (mRNA)

NM_021009

NM_019639

RefSeq (protein)

NP_066289

NP_062613

Location (UCSC)Chr 12: 124.91 – 124.92 MbChr 5: 125.46 – 125.47 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

Polyubiquitin-C is a protein encoded by the UBC gene in humans. Polyubiquitin-C is one of the sources of ubiquitin, along with UBB, UBA52, and RPS27A.

UBC gene is one of the two stress-regulated polyubiquitin genes (UBB and UBC) in mammals. It plays a key role in maintaining cellular ubiquitin levels under stress conditions. Defects of UBC gene could lead to mid-gestation embryonic lethality.

Structure

Gene

UBC gene is located at chromosome 12q24.3, consisting of 2 exons. The promoter of the UBC gene contains putative heat shock elements (HSEs), which mediates UBC induction upon stress. UBC gene differs from UBB gene in the number of Ub coding units they contain. Nine to ten Ub units were in the UBC gene.

Protein

In polyubiquitin-C, the C-terminus of a given ubiquitin molecule is covalently conjugated to either the N-terminal residue or one of seven lysine residues of another ubiquitin molecule. Different linking of ubiquitin chains results in distinct conformations. There are 8 linkage types of polyubiquitin-C, and each type possesses the linkage-dependent dynamics and a linkage-specific conformation.

Function

The diversity of polyubiquitin-C means that ubiquitylation contributes to the regulation of many cellular events. Polyubiquitin-C doesn’t activate the heat-shock response, but it plays a key role in sustaining the response. UBC gene transcription is induced during stress and provides extra ubiquitin necessary to remove damaged/unfolded proteins. Polyubiquitin-C has important role in diverse biological processes, such as innate immunity, DNA repair and kinase activity. Unanchored polyubiquitin-C are also key signaling molecules that connect and coordinate the proteasome and autophagy to eliminate toxic protein aggregates.

Clinical significance

Loss of a single UBC allele has no apparent phenotype, while homozygous deletion of UBC gene leads to mid-gestation embryonic lethality due to a defect in fetal liver development, as well as a delay in cell-cycle progression and increased susceptibility to cellular stress. It is also reported that homozygous deletion of UBC gene in mouse embryonic fibroblasts will cause decreased cellular Ub level and reduced viability under oxidative stress.

Interactions

Polyubiquitin-C has been shown to interact with:

References

  1. ^ GRCh38: Ensembl release 89: ENSG00000150991Ensembl, May 2017
  2. ^ GRCm38: Ensembl release 89: ENSMUSG00000008348Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Board PG, Coggan M, Baker RT, Vuust J, Webb GC (April 1992). "Localization of the human UBC polyubiquitin gene to chromosome band 12q24.3". Genomics. 12 (4): 639–42. doi:10.1016/0888-7543(92)90287-3. PMID 1315303.
  6. Marinovic AC, Zheng B, Mitch WE, Price SR (May 2002). "Ubiquitin (UbC) expression in muscle cells is increased by glucocorticoids through a mechanism involving Sp1 and MEK1". The Journal of Biological Chemistry. 277 (19): 16673–81. doi:10.1074/jbc.M200501200. PMID 11872750.
  7. "Entrez Gene: UBC ubiquitin C".
  8. Kimura Y, Tanaka K (June 2010). "Regulatory mechanisms involved in the control of ubiquitin homeostasis". Journal of Biochemistry. 147 (6): 793–8. doi:10.1093/jb/mvq044. PMID 20418328.
  9. ^ Wiborg O, Pedersen MS, Wind A, Berglund LE, Marcker KA, Vuust J (March 1985). "The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences". The EMBO Journal. 4 (3): 755–9. doi:10.1002/j.1460-2075.1985.tb03693.x. PMC 554252. PMID 2988935.
  10. ^ Ryu KY, Maehr R, Gilchrist CA, Long MA, Bouley DM, Mueller B, Ploegh HL, Kopito RR (June 2007). "The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance". The EMBO Journal. 26 (11): 2693–706. doi:10.1038/sj.emboj.7601722. PMC 1888680. PMID 17491588.
  11. Komander D, Rape M (2012). "The ubiquitin code". Annual Review of Biochemistry. 81: 203–29. doi:10.1146/annurev-biochem-060310-170328. PMID 22524316. S2CID 30693177.
  12. Ye Y, Blaser G, Horrocks MH, Ruedas-Rama MJ, Ibrahim S, Zhukov AA, Orte A, Klenerman D, Jackson SE, Komander D (December 2012). "Ubiquitin chain conformation regulates recognition and activity of interacting proteins". Nature. 492 (7428): 266–70. Bibcode:2012Natur.492..266Y. doi:10.1038/nature11722. PMC 3605796. PMID 23201676.
  13. Castañeda CA, Kashyap TR, Nakasone MA, Krueger S, Fushman D (July 2013). "Unique structural, dynamical, and functional properties of k11-linked polyubiquitin chains". Structure. 21 (7): 1168–81. doi:10.1016/j.str.2013.04.029. PMC 3802530. PMID 23823328.
  14. Tsirigotis M, Zhang M, Chiu RK, Wouters BG, Gray DA (December 2001). "Sensitivity of mammalian cells expressing mutant ubiquitin to protein-damaging agents". The Journal of Biological Chemistry. 276 (49): 46073–8. doi:10.1074/jbc.M109023200. PMID 11598140.
  15. Rajsbaum R, Versteeg GA, Schmid S, Maestre AM, Belicha-Villanueva A, Martínez-Romero C, Patel JR, Morrison J, Pisanelli G, Miorin L, Laurent-Rolle M, Moulton HM, Stein DA, Fernandez-Sesma A, tenOever BR, García-Sastre A (June 2014). "Unanchored K48-linked polyubiquitin synthesized by the E3-ubiquitin ligase TRIM6 stimulates the interferon-IKKε kinase-mediated antiviral response". Immunity. 40 (6): 880–95. doi:10.1016/j.immuni.2014.04.018. PMC 4114019. PMID 24882218.
  16. Rajsbaum R, García-Sastre A (October 2014). "Virology. Unanchored ubiquitin in virus uncoating". Science. 346 (6208): 427–8. doi:10.1126/science.1261509. PMID 25342790. S2CID 28504276.
  17. Pickart CM, Fushman D (December 2004). "Polyubiquitin chains: polymeric protein signals". Current Opinion in Chemical Biology. 8 (6): 610–6. doi:10.1016/j.cbpa.2004.09.009. PMID 15556404.
  18. Hao R, Nanduri P, Rao Y, Panichelli RS, Ito A, Yoshida M, Yao TP (September 2013). "Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains". Molecular Cell. 51 (6): 819–28. doi:10.1016/j.molcel.2013.08.016. PMC 3791850. PMID 24035499.
  19. Ryu HW, Ryu KY (January 2011). "Quantification of oxidative stress in live mouse embryonic fibroblasts by monitoring the responses of polyubiquitin genes". Biochemical and Biophysical Research Communications. 404 (1): 470–5. doi:10.1016/j.bbrc.2010.12.004. PMID 21144824.
  20. ^ Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (June 2008). "cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination". Molecular Cell. 30 (6): 689–700. doi:10.1016/j.molcel.2008.05.014. PMID 18570872.
  21. Didelot C, Lanneau D, Brunet M, Bouchot A, Cartier J, Jacquel A, Ducoroy P, Cathelin S, Decologne N, Chiosis G, Dubrez-Daloz L, Solary E, Garrido C (May 2008). "Interaction of heat-shock protein 90 beta isoform (HSP90 beta) with cellular inhibitor of apoptosis 1 (c-IAP1) is required for cell differentiation". Cell Death and Differentiation. 15 (5): 859–66. doi:10.1038/cdd.2008.5. PMID 18239673.
  22. Sekine K, Takubo K, Kikuchi R, Nishimoto M, Kitagawa M, Abe F, Nishikawa K, Tsuruo T, Naito M (April 2008). "Small molecules destabilize cIAP1 by activating auto-ubiquitylation". The Journal of Biological Chemistry. 283 (14): 8961–8. doi:10.1074/jbc.M709525200. PMID 18230607.
  23. Wang WJ, Li QQ, Xu JD, Cao XX, Li HX, Tang F, Chen Q, Yang JM, Xu ZD, Liu XP (2008). "Interaction between CD147 and P-glycoprotein and their regulation by ubiquitination in breast cancer cells". Chemotherapy. 54 (4): 291–301. doi:10.1159/000151225. PMID 18689982. S2CID 7260048.
  24. ^ Tan F, Lu L, Cai Y, Wang J, Xie Y, Wang L, Gong Y, Xu BE, Wu J, Luo Y, Qiang B, Yuan J, Sun X, Peng X (July 2008). "Proteomic analysis of ubiquitinated proteins in normal hepatocyte cell line Chang liver cells". Proteomics. 8 (14): 2885–96. doi:10.1002/pmic.200700887. PMID 18655026. S2CID 25586938.
  25. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP (October 2011). "Systematic and quantitative assessment of the ubiquitin-modified proteome". Molecular Cell. 44 (2): 325–40. doi:10.1016/j.molcel.2011.08.025. PMC 3200427. PMID 21906983.
  26. Zhou F, Zhang L, Wang A, Song B, Gong K, Zhang L, Hu M, Zhang X, Zhao N, Gong Y (May 2008). "The association of GSK3 beta with E2F1 facilitates nerve growth factor-induced neural cell differentiation". The Journal of Biological Chemistry. 283 (21): 14506–15. doi:10.1074/jbc.M706136200. PMID 18367454.
  27. ^ Sehat B, Andersson S, Girnita L, Larsson O (July 2008). "Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis". Cancer Research. 68 (14): 5669–77. doi:10.1158/0008-5472.CAN-07-6364. PMID 18632619.
  28. Pennock S, Wang Z (May 2008). "A tale of two Cbls: interplay of c-Cbl and Cbl-b in epidermal growth factor receptor downregulation". Molecular and Cellular Biology. 28 (9): 3020–37. doi:10.1128/MCB.01809-07. PMC 2293090. PMID 18316398.
  29. Umebayashi K, Stenmark H, Yoshimori T (August 2008). "Ubc4/5 and c-Cbl continue to ubiquitinate EGF receptor after internalization to facilitate polyubiquitination and degradation". Molecular Biology of the Cell. 19 (8): 3454–62. doi:10.1091/mbc.E07-10-0988. PMC 2488299. PMID 18508924.
  30. André H, Pereira TS (October 2008). "Identification of an alternative mechanism of degradation of the hypoxia-inducible factor-1alpha". The Journal of Biological Chemistry. 283 (43): 29375–84. doi:10.1074/jbc.M805919200. PMC 2662024. PMID 18694926.
  31. Park YK, Ahn DR, Oh M, Lee T, Yang EG, Son M, Park H (July 2008). "Nitric oxide donor, (+/-)-S-nitroso-N-acetylpenicillamine, stabilizes transactive hypoxia-inducible factor-1alpha by inhibiting von Hippel-Lindau recruitment and asparagine hydroxylation". Molecular Pharmacology. 74 (1): 236–45. doi:10.1124/mol.108.045278. PMID 18426857. S2CID 31675735.
  32. Kim BY, Kim H, Cho EJ, Youn HD (February 2008). "Nur77 upregulates HIF-alpha by inhibiting pVHL-mediated degradation". Experimental & Molecular Medicine. 40 (1): 71–83. doi:10.3858/emm.2008.40.1.71. PMC 2679322. PMID 18305400.
  33. ^ Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, Dugger D, Gordon N, Sidhu SS, Fellouse FA, Komuves L, French DM, Ferrando RE, Lam C, Compaan D, Yu C, Bosanac I, Hymowitz SG, Kelley RF, Dixit VM (August 2008). "Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies". Cell. 134 (4): 668–78. doi:10.1016/j.cell.2008.07.039. PMID 18724939. S2CID 3955385.
  34. ^ Conze DB, Wu CJ, Thomas JA, Landstrom A, Ashwell JD (May 2008). "Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-kappaB activation". Molecular and Cellular Biology. 28 (10): 3538–47. doi:10.1128/MCB.02098-07. PMC 2423148. PMID 18347055.
  35. Xiao H, Qian W, Staschke K, Qian Y, Cui G, Deng L, Ehsani M, Wang X, Qian YW, Chen ZJ, Gilmour R, Jiang Z, Li X (May 2008). "Pellino 3b negatively regulates interleukin-1-induced TAK1-dependent NF kappaB activation". The Journal of Biological Chemistry. 283 (21): 14654–64. doi:10.1074/jbc.M706931200. PMC 2386918. PMID 18326498.
  36. Windheim M, Stafford M, Peggie M, Cohen P (March 2008). "Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IkappaBalpha kinase". Molecular and Cellular Biology. 28 (5): 1783–91. doi:10.1128/MCB.02380-06. PMC 2258775. PMID 18180283.
  37. KIAA0753 Gene - GeneCards | K0753 Protein | K0753 Antibody, (available at https://www.genecards.org/cgi-bin/carddisp.pl?gene=KIAA0753).
  38. ^ Al-Hakim AK, Zagorska A, Chapman L, Deak M, Peggie M, Alessi DR (April 2008). "Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains" (PDF). The Biochemical Journal. 411 (2): 249–60. doi:10.1042/BJ20080067. PMID 18254724. S2CID 13038944.
  39. ^ Ivanchuk SM, Mondal S, Rutka JT (June 2008). "p14ARF interacts with DAXX: effects on HDM2 and p53". Cell Cycle. 7 (12): 1836–50. doi:10.4161/cc.7.12.6025. PMID 18583933.
  40. ^ Song MS, Song SJ, Kim SY, Oh HJ, Lim DS (July 2008). "The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex". The EMBO Journal. 27 (13): 1863–74. doi:10.1038/emboj.2008.115. PMC 2486425. PMID 18566590.
  41. ^ Yang W, Dicker DT, Chen J, El-Deiry WS (March 2008). "CARPs enhance p53 turnover by degrading 14-3-3sigma and stabilizing MDM2". Cell Cycle. 7 (5): 670–82. doi:10.4161/cc.7.5.5701. PMID 18382127.
  42. Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C (October 2011). "A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles". Molecular & Cellular Proteomics. 10 (10): M111.013284. doi:10.1074/mcp.M111.013284. PMC 3205876. PMID 21890473.
  43. Shibata T, Ohta T, Tong KI, Kokubu A, Odogawa R, Tsuta K, Asamura H, Yamamoto M, Hirohashi S (September 2008). "Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy". Proceedings of the National Academy of Sciences of the United States of America. 105 (36): 13568–73. Bibcode:2008PNAS..10513568S. doi:10.1073/pnas.0806268105. PMC 2533230. PMID 18757741.
  44. Patel R, Maru G (June 2008). "Polymeric black tea polyphenols induce phase II enzymes via Nrf2 in mouse liver and lungs". Free Radical Biology & Medicine. 44 (11): 1897–911. doi:10.1016/j.freeradbiomed.2008.02.006. PMID 18358244.
  45. Chastagner P, Israël A, Brou C (2008). Wölfl S (ed.). "AIP4/Itch regulates Notch receptor degradation in the absence of ligand". PLOS ONE. 3 (7): e2735. Bibcode:2008PLoSO...3.2735C. doi:10.1371/journal.pone.0002735. PMC 2444042. PMID 18628966.
  46. Li JG, Haines DS, Liu-Chen LY (April 2008). "Agonist-promoted Lys63-linked polyubiquitination of the human kappa-opioid receptor is involved in receptor down-regulation". Molecular Pharmacology. 73 (4): 1319–30. doi:10.1124/mol.107.042846. PMC 3489932. PMID 18212250.
  47. Han JM, Park BJ, Park SG, Oh YS, Choi SJ, Lee SW, Hwang SK, Chang SH, Cho MH, Kim S (August 2008). "AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53". Proceedings of the National Academy of Sciences of the United States of America. 105 (32): 11206–11. Bibcode:2008PNAS..10511206H. doi:10.1073/pnas.0800297105. PMC 2516205. PMID 18695251.
  48. Abe Y, Oda-Sato E, Tobiume K, Kawauchi K, Taya Y, Okamoto K, Oren M, Tanaka N (March 2008). "Hedgehog signaling overrides p53-mediated tumor suppression by activating Mdm2". Proceedings of the National Academy of Sciences of the United States of America. 105 (12): 4838–43. Bibcode:2008PNAS..105.4838A. doi:10.1073/pnas.0712216105. PMC 2290789. PMID 18359851.
  49. Zhang Z, Zhang R (March 2008). "Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation". The EMBO Journal. 27 (6): 852–64. doi:10.1038/emboj.2008.25. PMC 2265109. PMID 18309296.
  50. Dohmesen C, Koeppel M, Dobbelstein M (January 2008). "Specific inhibition of Mdm2-mediated neddylation by Tip60". Cell Cycle. 7 (2): 222–31. doi:10.4161/cc.7.2.5185. PMID 18264029. S2CID 8023403.
  51. Motegi A, Liaw HJ, Lee KY, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JH, Myung K (August 2008). "Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks". Proceedings of the National Academy of Sciences of the United States of America. 105 (34): 12411–6. Bibcode:2008PNAS..10512411M. doi:10.1073/pnas.0805685105. PMC 2518831. PMID 18719106.
  52. Unk I, Hajdú I, Fátyol K, Hurwitz J, Yoon JH, Prakash L, Prakash S, Haracska L (March 2008). "Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination". Proceedings of the National Academy of Sciences of the United States of America. 105 (10): 3768–73. Bibcode:2008PNAS..105.3768U. doi:10.1073/pnas.0800563105. PMC 2268824. PMID 18316726.
  53. Brun J, Chiu R, Lockhart K, Xiao W, Wouters BG, Gray DA (2008). "hMMS2 serves a redundant role in human PCNA polyubiquitination". BMC Molecular Biology. 9: 24. doi:10.1186/1471-2199-9-24. PMC 2263069. PMID 18284681.
  54. Yu F, Zhou J (July 2008). "Parkin is ubiquitinated by Nrdp1 and abrogates Nrdp1-induced oxidative stress". Neuroscience Letters. 440 (1): 4–8. doi:10.1016/j.neulet.2008.05.052. PMID 18541373. S2CID 2169911.
  55. Kawahara K, Hashimoto M, Bar-On P, Ho GJ, Crews L, Mizuno H, Rockenstein E, Imam SZ, Masliah E (March 2008). "alpha-Synuclein aggregates interfere with Parkin solubility and distribution: role in the pathogenesis of Parkinson disease". The Journal of Biological Chemistry. 283 (11): 6979–87. doi:10.1074/jbc.M710418200. PMID 18195004.
  56. ^ Ma Q, Zhou L, Shi H, Huo K (June 2008). "NUMBL interacts with TAB2 and inhibits TNFalpha and IL-1beta-induced NF-kappaB activation". Cellular Signalling. 20 (6): 1044–51. doi:10.1016/j.cellsig.2008.01.015. PMID 18299187.
  57. Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K, Fairbrother WJ, Vucic D (September 2008). "c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation". The Journal of Biological Chemistry. 283 (36): 24295–9. doi:10.1074/jbc.C800128200. PMC 3259840. PMID 18621737.
  58. Liao W, Xiao Q, Tchikov V, Fujita K, Yang W, Wincovitch S, Garfield S, Conze D, El-Deiry WS, Schütze S, Srinivasula SM (May 2008). "CARP-2 is an endosome-associated ubiquitin ligase for RIP and regulates TNF-induced NF-kappaB activation". Current Biology. 18 (9): 641–9. doi:10.1016/j.cub.2008.04.017. PMC 2587165. PMID 18450452.
  59. Panasyuk G, Nemazanyy I, Filonenko V, Gout I (May 2008). "Ribosomal protein S6 kinase 1 interacts with and is ubiquitinated by ubiquitin ligase ROC1". Biochemical and Biophysical Research Communications. 369 (2): 339–43. doi:10.1016/j.bbrc.2008.02.016. PMID 18279656.
  60. He KL, Deora AB, Xiong H, Ling Q, Weksler BB, Niesvizky R, Hajjar KA (July 2008). "Endothelial cell annexin A2 regulates polyubiquitination and degradation of its binding partner S100A10/p11". The Journal of Biological Chemistry. 283 (28): 19192–200. doi:10.1074/jbc.M800100200. PMC 2443646. PMID 18434302.
  61. ^ Boulkroun S, Ruffieux-Daidié D, Vitagliano JJ, Poirot O, Charles RP, Lagnaz D, Firsov D, Kellenberger S, Staub O (October 2008). "Vasopressin-inducible ubiquitin-specific protease 10 increases ENaC cell surface expression by deubiquitylating and stabilizing sorting nexin 3". American Journal of Physiology. Renal Physiology. 295 (4): F889–900. doi:10.1152/ajprenal.00001.2008. PMID 18632802.
  62. ^ Raikwar NS, Thomas CP (May 2008). "Nedd4-2 isoforms ubiquitinate individual epithelial sodium channel subunits and reduce surface expression and function of the epithelial sodium channel". American Journal of Physiology. Renal Physiology. 294 (5): F1157–65. doi:10.1152/ajprenal.00339.2007. PMC 2424110. PMID 18322022.
  63. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (September 2005). "A human protein-protein interaction network: a resource for annotating the proteome". Cell. 122 (6): 957–68. doi:10.1016/j.cell.2005.08.029. hdl:11858/00-001M-0000-0010-8592-0. PMID 16169070. S2CID 8235923.
  64. Stolfi C, Fina D, Caruso R, Caprioli F, Fantini MC, Rizzo A, Sarra M, Pallone F, Monteleone G (June 2008). "Mesalazine negatively regulates CDC25A protein expression and promotes accumulation of colon cancer cells in S phase". Carcinogenesis. 29 (6): 1258–66. doi:10.1093/carcin/bgn122. PMID 18495657.
  65. Guo X, Ramirez A, Waddell DS, Li Z, Liu X, Wang XF (January 2008). "Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling". Genes & Development. 22 (1): 106–20. doi:10.1101/gad.1590908. PMC 2151009. PMID 18172167.
  66. Carpentier I, Coornaert B, Beyaert R (October 2008). "Smurf2 is a TRAF2 binding protein that triggers TNF-R2 ubiquitination and TNF-R2-induced JNK activation". Biochemical and Biophysical Research Communications. 374 (4): 752–7. doi:10.1016/j.bbrc.2008.07.103. PMID 18671942.
  67. Lee YS, Han JM, Son SH, Choi JW, Jeon EJ, Bae SC, Park YI, Kim S (July 2008). "AIMP1/p43 downregulates TGF-beta signaling via stabilization of smurf2". Biochemical and Biophysical Research Communications. 371 (3): 395–400. doi:10.1016/j.bbrc.2008.04.099. PMID 18448069.
  68. Wang YT, Chuang JY, Shen MR, Yang WB, Chang WC, Hung JJ (July 2008). "Sumoylation of specificity protein 1 augments its degradation by changing the localization and increasing the specificity protein 1 proteolytic process". Journal of Molecular Biology. 380 (5): 869–85. doi:10.1016/j.jmb.2008.05.043. PMID 18572193.
  69. Chen L, Dong W, Zou T, Ouyang L, He G, Liu Y, Qi Y (August 2008). "Protein phosphatase 4 negatively regulates LPS cascade by inhibiting ubiquitination of TRAF6". FEBS Letters. 582 (19): 2843–9. doi:10.1016/j.febslet.2008.07.014. PMID 18634786. S2CID 27700566.
  70. Lamothe B, Campos AD, Webster WK, Gopinathan A, Hur L, Darnay BG (September 2008). "The RING domain and first zinc finger of TRAF6 coordinate signaling by interleukin-1, lipopolysaccharide, and RANKL". The Journal of Biological Chemistry. 283 (36): 24871–80. doi:10.1074/jbc.M802749200. PMC 2529010. PMID 18617513.

Further reading

PDB gallery
  • 1aar: STRUCTURE OF A DIUBIQUITIN CONJUGATE AND A MODEL FOR INTERACTION WITH UBIQUITIN CONJUGATING ENZYME (E2) 1aar: STRUCTURE OF A DIUBIQUITIN CONJUGATE AND A MODEL FOR INTERACTION WITH UBIQUITIN CONJUGATING ENZYME (E2)
  • 1cmx: STRUCTURAL BASIS FOR THE SPECIFICITY OF UBIQUITIN C-TERMINAL HYDROLASES 1cmx: STRUCTURAL BASIS FOR THE SPECIFICITY OF UBIQUITIN C-TERMINAL HYDROLASES
  • 1d3z: UBIQUITIN NMR STRUCTURE 1d3z: UBIQUITIN NMR STRUCTURE
  • 1f9j: STRUCTURE OF A NEW CRYSTAL FORM OF TETRAUBIQUITIN 1f9j: STRUCTURE OF A NEW CRYSTAL FORM OF TETRAUBIQUITIN
  • 1fxt: STRUCTURE OF A CONJUGATING ENZYME-UBIQUITIN THIOLESTER COMPLEX 1fxt: STRUCTURE OF A CONJUGATING ENZYME-UBIQUITIN THIOLESTER COMPLEX
  • 1g6j: STRUCTURE OF RECOMBINANT HUMAN UBIQUITIN IN AOT REVERSE MICELLES 1g6j: STRUCTURE OF RECOMBINANT HUMAN UBIQUITIN IN AOT REVERSE MICELLES
  • 1gjz: SOLUTION STRUCTURE OF A DIMERIC N-TERMINAL FRAGMENT OF HUMAN UBIQUITIN 1gjz: SOLUTION STRUCTURE OF A DIMERIC N-TERMINAL FRAGMENT OF HUMAN UBIQUITIN
  • 1nbf: Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde 1nbf: Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde
  • 1ogw: SYNTHETIC UBIQUITIN WITH FLUORO-LEU AT 50 AND 67 1ogw: SYNTHETIC UBIQUITIN WITH FLUORO-LEU AT 50 AND 67
  • 1otr: Solution Structure of a CUE-Ubiquitin Complex 1otr: Solution Structure of a CUE-Ubiquitin Complex
  • 1p3q: Mechanism of Ubiquitin Recognition by the CUE Domain of VPS9 1p3q: Mechanism of Ubiquitin Recognition by the CUE Domain of VPS9
  • 1q0w: Solution structure of Vps27 amino-terminal UIM-ubiquitin complex 1q0w: Solution structure of Vps27 amino-terminal UIM-ubiquitin complex
  • 1q5w: Ubiquitin Recognition by Npl4 Zinc-Fingers 1q5w: Ubiquitin Recognition by Npl4 Zinc-Fingers
  • 1s1q: TSG101(UEV) domain in complex with Ubiquitin 1s1q: TSG101(UEV) domain in complex with Ubiquitin
  • 1sif: Crystal structure of a multiple hydrophobic core mutant of ubiquitin 1sif: Crystal structure of a multiple hydrophobic core mutant of ubiquitin
  • 1tbe: STRUCTURE OF TETRAUBIQUITIN SHOWS HOW MULTIUBIQUITIN CHAINS CAN BE FORMED 1tbe: STRUCTURE OF TETRAUBIQUITIN SHOWS HOW MULTIUBIQUITIN CHAINS CAN BE FORMED
  • 1ubi: SYNTHETIC STRUCTURAL AND BIOLOGICAL STUDIES OF THE UBIQUITIN SYSTEM. PART 1 1ubi: SYNTHETIC STRUCTURAL AND BIOLOGICAL STUDIES OF THE UBIQUITIN SYSTEM. PART 1
  • 1ubq: STRUCTURE OF UBIQUITIN REFINED AT 1.8 ANGSTROMS RESOLUTION 1ubq: STRUCTURE OF UBIQUITIN REFINED AT 1.8 ANGSTROMS RESOLUTION
  • 1ud7: SOLUTION STRUCTURE OF THE DESIGNED HYDROPHOBIC CORE MUTANT OF UBIQUITIN, 1D7 1ud7: SOLUTION STRUCTURE OF THE DESIGNED HYDROPHOBIC CORE MUTANT OF UBIQUITIN, 1D7
  • 1uzx: A COMPLEX OF THE VPS23 UEV WITH UBIQUITIN 1uzx: A COMPLEX OF THE VPS23 UEV WITH UBIQUITIN
  • 1v80: Solution structures of ubiquitin at 30 bar and 3 kbar 1v80: Solution structures of ubiquitin at 30 bar and 3 kbar
  • 1v81: Solution structures of ubiquitin at 30 bar and 3 kbar 1v81: Solution structures of ubiquitin at 30 bar and 3 kbar
  • 1wr1: The complex structure of Dsk2p UBA with ubiquitin 1wr1: The complex structure of Dsk2p UBA with ubiquitin
  • 1wr6: Crystal structure of GGA3 GAT domain in complex with ubiquitin 1wr6: Crystal structure of GGA3 GAT domain in complex with ubiquitin
  • 1wrd: Crystal structure of Tom1 GAT domain in complex with ubiquitin 1wrd: Crystal structure of Tom1 GAT domain in complex with ubiquitin
  • 1xd3: Crystal structure of UCHL3-UbVME complex 1xd3: Crystal structure of UCHL3-UbVME complex
  • 1xqq: Simultaneous determination of protein structure and dynamics 1xqq: Simultaneous determination of protein structure and dynamics
  • 1yd8: COMPLEX OF HUMAN GGA3 GAT DOMAIN AND UBIQUITIN 1yd8: COMPLEX OF HUMAN GGA3 GAT DOMAIN AND UBIQUITIN
  • 1yiw: X-ray Crystal Structure of a Chemically Synthesized Ubiquitin 1yiw: X-ray Crystal Structure of a Chemically Synthesized Ubiquitin
  • 1yj1: X-ray Crystal Structure of a Chemically Synthesized Ubiquitin 1yj1: X-ray Crystal Structure of a Chemically Synthesized Ubiquitin
  • 1yx5: Solution Structure of S5a UIM-1/Ubiquitin Complex 1yx5: Solution Structure of S5a UIM-1/Ubiquitin Complex
  • 1yx6: Solution Structure of S5a UIM-2/Ubiquitin Complex 1yx6: Solution Structure of S5a UIM-2/Ubiquitin Complex
  • 1zgu: Solution structure of the human Mms2-Ubiquitin complex 1zgu: Solution structure of the human Mms2-Ubiquitin complex
  • 2ayo: Structure of USP14 bound to ubquitin aldehyde 2ayo: Structure of USP14 bound to ubquitin aldehyde
  • 2bgf: NMR STRUCTURE OF LYS48-LINKED DI-UBIQUITIN USING CHEMICAL SHIFT PERTURBATION DATA TOGETHER WITH RDCS AND 15N-RELAXATION DATA 2bgf: NMR STRUCTURE OF LYS48-LINKED DI-UBIQUITIN USING CHEMICAL SHIFT PERTURBATION DATA TOGETHER WITH RDCS AND 15N-RELAXATION DATA
  • 2c7m: HUMAN RABEX-5 RESIDUES 1-74 IN COMPLEX WITH UBIQUITIN 2c7m: HUMAN RABEX-5 RESIDUES 1-74 IN COMPLEX WITH UBIQUITIN
  • 2c7n: HUMAN RABEX-5 RESIDUES 1-74 IN COMPLEX WITH UBIQUITIN 2c7n: HUMAN RABEX-5 RESIDUES 1-74 IN COMPLEX WITH UBIQUITIN
  • 2d3g: Double sided ubiquitin binding of Hrs-UIM 2d3g: Double sided ubiquitin binding of Hrs-UIM
  • 2den: Solution Structure of the Ubiquitin-Associated Domain of Human BMSC-UbP and its Complex with Ubiquitin 2den: Solution Structure of the Ubiquitin-Associated Domain of Human BMSC-UbP and its Complex with Ubiquitin
  • 2dx5: The complex structure between the mouse EAP45-GLUE domain and ubiquitin 2dx5: The complex structure between the mouse EAP45-GLUE domain and ubiquitin
  • 2fcm: X-ray Crystal Structure of a Chemically Synthesized Ubiquitin with a Cubic Space Group 2fcm: X-ray Crystal Structure of a Chemically Synthesized Ubiquitin with a Cubic Space Group
  • 2fcn: X-ray Crystal Structure of a Chemically Synthesized Ubiquitin with a Cubic Space Group 2fcn: X-ray Crystal Structure of a Chemically Synthesized Ubiquitin with a Cubic Space Group
  • 2fcq: X-ray Crystal Structure of a Chemically Synthesized Ubiquitin with a Cubic Space Group 2fcq: X-ray Crystal Structure of a Chemically Synthesized Ubiquitin with a Cubic Space Group
  • 2fcs: X-ray Crystal Structure of a Chemically Synthesized Ubiquitin with a Cubic Space Group 2fcs: X-ray Crystal Structure of a Chemically Synthesized Ubiquitin with a Cubic Space Group
  • 2fid: Crystal Structure of a Bovine Rabex-5 fragment complexed with ubiquitin 2fid: Crystal Structure of a Bovine Rabex-5 fragment complexed with ubiquitin
  • 2fif: Crystal Structure of a Bovine Rabex-5 fragment complexed with ubiquitin 2fif: Crystal Structure of a Bovine Rabex-5 fragment complexed with ubiquitin
  • 2fuh: Solution Structure of the UbcH5c/Ub Non-covalent Complex 2fuh: Solution Structure of the UbcH5c/Ub Non-covalent Complex
  • 2g3q: Solution Structure of Ede1 UBA-ubiquitin complex 2g3q: Solution Structure of Ede1 UBA-ubiquitin complex
  • 2g45: Co-crystal structure of znf ubp domain from the deubiquitinating enzyme isopeptidase T (isot) in complex with ubiquitin 2g45: Co-crystal structure of znf ubp domain from the deubiquitinating enzyme isopeptidase T (isot) in complex with ubiquitin
  • 2gbj: Crystal Structure of the 9-10 8 Glycine Insertion Mutant of Ubiquitin. 2gbj: Crystal Structure of the 9-10 8 Glycine Insertion Mutant of Ubiquitin.
  • 2gbk: Crystal Structure of the 9-10 MoaD Insertion Mutant of Ubiquitin 2gbk: Crystal Structure of the 9-10 MoaD Insertion Mutant of Ubiquitin
  • 2gbm: Crystal Structure of the 35-36 8 Glycine Insertion Mutant of Ubiquitin 2gbm: Crystal Structure of the 35-36 8 Glycine Insertion Mutant of Ubiquitin
  • 2gbn: Crystal Structure of the 35-36 8 Glycine Insertion Mutant of Ubiquitin 2gbn: Crystal Structure of the 35-36 8 Glycine Insertion Mutant of Ubiquitin
  • 2gbr: Crystal Structure of the 35-36 MoaD Insertion Mutant of Ubiquitin 2gbr: Crystal Structure of the 35-36 MoaD Insertion Mutant of Ubiquitin
  • 2gmi: Mms2/Ubc13~Ubiquitin 2gmi: Mms2/Ubc13~Ubiquitin
  • 2hd5: USP2 in complex with ubiquitin 2hd5: USP2 in complex with ubiquitin
  • 2hth: Structural basis for ubiquitin recognition by the human EAP45/ESCRT-II GLUE domain 2hth: Structural basis for ubiquitin recognition by the human EAP45/ESCRT-II GLUE domain
  • 2ibi: Covalent Ubiquitin-USP2 Complex 2ibi: Covalent Ubiquitin-USP2 Complex
  • 2j7q: CRYSTAL STRUCTURE OF THE UBIQUITIN-SPECIFIC PROTEASE ENCODED BY MURINE CYTOMEGALOVIRUS TEGUMENT PROTEIN M48 IN COMPLEX WITH A UBQUITIN-BASED SUICIDE SUBSTRATE 2j7q: CRYSTAL STRUCTURE OF THE UBIQUITIN-SPECIFIC PROTEASE ENCODED BY MURINE CYTOMEGALOVIRUS TEGUMENT PROTEIN M48 IN COMPLEX WITH A UBQUITIN-BASED SUICIDE SUBSTRATE
  • 2nr2: The MUMO (minimal under-restraining minimal over-restraining) method for the determination of native states ensembles of proteins 2nr2: The MUMO (minimal under-restraining minimal over-restraining) method for the determination of native states ensembles of proteins
  • 2o6v: Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH 2o6v: Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH
  • 2oob: crystal structure of the UBA domain from Cbl-b ubiquitin ligase in complex with ubiquitin 2oob: crystal structure of the UBA domain from Cbl-b ubiquitin ligase in complex with ubiquitin
Categories: