Article snapshot taken from Wikipedia with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
Let and a field (typically or ) equipped with a norm (typically the absolute value). Then a function of the form is called an ultrapolynomial of class , if the coefficients satisfy for all , for some and (resp. for every and some ).
References
Lozanov-Crvenković, Z.; Perišić, D. (5 Feb 2007). "Kernel theorem for the space of Beurling - Komatsu tempered ultradistibutions". arXiv:math/0702093.
Lozanov-Crvenković, Z (October 2007). "Kernel theorems for the spaces of tempered ultradistributions". Integral Transforms and Special Functions. 18 (10): 699–713. doi:10.1080/10652460701445658. S2CID123420666.
Pilipović, Stevan; Pilipović, Bojan; Prangoski, Jasson (2021). "Infinite order $$\Psi $$DOs: Composition with entire functions, new Shubin-Sobolev spaces, and index theorem". Analysis and Mathematical Physics. 11 (3). arXiv:1711.05628. doi:10.1007/s13324-021-00545-w. S2CID201107206.