Misplaced Pages

Uniform property

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Uniform properties) Object of study in the category of uniform topological spaces

In the mathematical field of topology a uniform property or uniform invariant is a property of a uniform space that is invariant under uniform isomorphisms.

Since uniform spaces come as topological spaces and uniform isomorphisms are homeomorphisms, every topological property of a uniform space is also a uniform property. This article is (mostly) concerned with uniform properties that are not topological properties.

Uniform properties

  • Separated. A uniform space X is separated if the intersection of all entourages is equal to the diagonal in X × X. This is actually just a topological property, and equivalent to the condition that the underlying topological space is Hausdorff (or simply T0 since every uniform space is completely regular).
  • Complete. A uniform space X is complete if every Cauchy net in X converges (i.e. has a limit point in X).
  • Totally bounded (or Precompact). A uniform space X is totally bounded if for each entourage EX × X there is a finite cover {Ui} of X such that Ui × Ui is contained in E for all i. Equivalently, X is totally bounded if for each entourage E there exists a finite subset {xi} of X such that X is the union of all E. In terms of uniform covers, X is totally bounded if every uniform cover has a finite subcover.
  • Compact. A uniform space is compact if it is complete and totally bounded. Despite the definition given here, compactness is a topological property and so admits a purely topological description (every open cover has a finite subcover).
  • Uniformly connected. A uniform space X is uniformly connected if every uniformly continuous function from X to a discrete uniform space is constant.
  • Uniformly disconnected. A uniform space X is uniformly disconnected if it is not uniformly connected.

See also

References

Category: