In algebraic geometry, a universal homeomorphism is a morphism of schemes such that, for each morphism , the base change is a homeomorphism of topological spaces.
A morphism of schemes is a universal homeomorphism if and only if it is integral, radicial and surjective. In particular, a morphism of locally of finite type is a universal homeomorphism if and only if it is finite, radicial and surjective.
For example, an absolute Frobenius morphism is a universal homeomorphism.
References
- EGA IV4, 18.12.11.
- Grothendieck, Alexandre; Dieudonné, Jean (1967). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie". Publications Mathématiques de l'IHÉS. 32. doi:10.1007/bf02732123. MR 0238860.
External links
This algebraic geometry–related article is a stub. You can help Misplaced Pages by expanding it. |