Misplaced Pages

Variational bicomplex

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article may be confusing or unclear to readers. Please help clarify the article. There might be a discussion about this on the talk page. (August 2022) (Learn how and when to remove this message)
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (June 2012) (Learn how and when to remove this message)
(Learn how and when to remove this message)

In mathematics, the Lagrangian theory on fiber bundles is globally formulated in algebraic terms of the variational bicomplex, without appealing to the calculus of variations. For instance, this is the case of classical field theory on fiber bundles (covariant classical field theory).

The variational bicomplex is a cochain complex of the differential graded algebra of exterior forms on jet manifolds of sections of a fiber bundle. Lagrangians and Euler–Lagrange operators on a fiber bundle are defined as elements of this bicomplex. Cohomology of the variational bicomplex leads to the global first variational formula and first Noether's theorem.

Extended to Lagrangian theory of even and odd fields on graded manifolds, the variational bicomplex provides strict mathematical formulation of classical field theory in a general case of reducible degenerate Lagrangians and the Lagrangian BRST theory.

See also

References

External links


Stub icon

This mathematical physics-related article is a stub. You can help Misplaced Pages by expanding it.

Stub icon

This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it.

Categories: