Misplaced Pages

Rolapitant

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Varubi) Pharmaceutical drug Pharmaceutical compound
Rolapitant
Clinical data
Pronunciation/roʊˈlæpɪtænt/ roh-LAP-i-tant
Trade namesVarubi (US), Varuby (EU)
Other namesSCH 619734
AHFS/Drugs.comMonograph
MedlinePlusa615041
License data
Routes of
administration
By mouth (tablets), intravenous
Drug classNK1 receptor antagonists, antiemetics
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailabilitynearly 100%
Protein binding99.8%
MetabolismCYP3A4
MetabolitesC4-pyrrolidine-hydroxylated rolapitant (major)
Elimination half-life169–183 hours
ExcretionFeces (52–89%), urine (9–20%)
Identifiers
IUPAC name
  • (5S,8S)-8-({(1R)-1-ethoxy}methyl)- 8-phenyl-1,7-diazaspirodecan-2-one
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
CompTox Dashboard (EPA)
ECHA InfoCard100.243.022 Edit this at Wikidata
Chemical and physical data
FormulaC25H26F6N2O2
Molar mass500.485 g·mol
3D model (JSmol)
SMILES
  • FC(F)(F)c(c4)cc(C(F)(F)F)cc4C(C)OCC3(c2ccccc2)NCC1(CC3)NC(=O)CC1
InChI
  • InChI=1S/C25H26F6N2O2/c1-16(17-11-19(24(26,27)28)13-20(12-17)25(29,30)31)35-15-23(18-5-3-2-4-6-18)10-9-22(14-32-23)8-7-21(34)33-22/h2-6,11-13,16,32H,7-10,14-15H2,1H3,(H,33,34)/t16-,22-,23-/m1/s1
  • Key:FIVSJYGQAIEMOC-ZGNKEGEESA-N

Rolapitant (INN, trade name Varubi /vəˈruːbi/ və-ROO-bee in the US and Varuby in the European Union) is a drug originally developed by Schering-Plough and licensed for clinical development by Tesaro, which acts as a selective NK1 receptor antagonist (antagonist for the NK1 receptor). It has been approved as a medication for the treatment of chemotherapy-induced nausea and vomiting (CINV) after clinical trials showed it to have similar or improved efficacy and some improvement in safety over existing drugs for this application.

Medical uses

Rolapitant is used in combination with other antiemetic (anti-vomiting) agents in adults for the prevention of delayed nausea and vomiting associated with initial and repeat courses of emetogenic cancer chemotherapy, including, but not limited to, highly emetogenic chemotherapy. The approved antiemetic combination consists of rolapitant plus dexamethasone and a 5-HT3 antagonist.

Contraindications

Under the US approval, rolapitant is contraindicated in combination with thioridazine, whose inactivation could be inhibited by rolapitant. Under the European approval, it is contraindicated in combination with St. John's Wort, which is expected to accelerate inactivation of rolapitant.

Side effects

In studies comparing chemotherapy plus rolapitant, dexamethasone and a 5-HT3 antagonist to chemotherapy plus placebo, dexamethasone and a 5-HT3 antagonist, most side effects had comparable frequencies in both groups, and differed more between chemotherapy regimens than between rolapitant and placebo groups. Common side effects included decreased appetite (9% under rolapitant vs. 7% under placebo), neutropenia (9% vs. 8% or 7% vs. 6%, depending on the kind of chemotherapy), dizziness (6% vs. 4%), indigestion and stomatitis (both 4% vs. 2%).

Overdose

Up to eightfold therapeutic doses have been given in studies without problems.

Interactions

Rolapitant moderately inhibits the liver enzyme CYP2D6. Blood plasma concentrations of the CYP2D6 substrate dextromethorphan have increased threefold when combined with rolapitant; and increased concentrations of other substrates are expected. The drug also inhibits the transporter proteins ABCG2 (breast cancer resistance protein, BCRP) and P-glycoprotein (P-gp), which has been shown to increase plasma concentrations of the ABCG2 substrate sulfasalazine twofold and the P-gp substrate digoxin by 70%.

Strong inducers of the liver enzyme CYP3A4 decrease the area under the curve of rolapitant and its active metabolite (called M19); for rifampicin, this effect was almost 90% in a study. Inhibitors of CYP3A4 have no relevant effect on rolapitant concentrations.

Pharmacology

Further information: Aprepitant § Mechanism of action

Pharmacodynamics

Both rolapitant and its active metabolite M19 block the NK1 receptor with high affinity and selectivity: to block the closely related receptor NK2 or any other of 115 tested receptors and enzymes, more than 1000-fold therapeutic concentrations are necessary.

Pharmacokinetics

The major active metabolite, M19 (C4-pyrrolidine-hydroxylated rolapitant). The stereochemistry of the hydroxyl group is unknown.

Rolapitant is practically completely absorbed from the gut, independently of food intake. It undergoes no measurable first-pass effect in the liver. Highest blood plasma concentrations are reached after about four hours. When in the bloodstream, 99.8% of the substance are bound to plasma proteins.

It is metabolized by the liver enzyme CYP3A4, resulting in the major active metabolite M19 (C4-pyrrolidine-hydroxylated rolapitant) and a number of inactive metabolites. Rolapitant is mainly excreted via the feces (52–89%) in unchanged form, and to a lesser extent via the urine (9–20%) in form of its inactive metabolites. Elimination half-life is about seven days (169 to 183 hours) over a wide dosing range.

Chemistry

The drug is used in form of rolapitant hydrochloride monohydrate, a white to off-white, slightly hygroscopic crystalline powder. Its maximum solubility in aqueous solutions is at pH 2–4.

References

  1. ^ "Varubi- rolapitant tablet". DailyMed. 6 August 2019. Retrieved 21 August 2020.
  2. "International Nonproprietary Names for Pharmaceutical Substances (INN). Recommended International Nonproprietary Names (Rec. INN): List 59" (PDF). World Health Organization. p. 64. Retrieved 5 October 2016.
  3. Duffy RA, Morgan C, Naylor R, Higgins GA, Varty GB, Lachowicz JE, Parker EM (July 2012). "Rolapitant (SCH 619734): a potent, selective and orally active neurokinin NK1 receptor antagonist with centrally-mediated antiemetic effects in ferrets". Pharmacology, Biochemistry, and Behavior. 102 (1): 95–100. doi:10.1016/j.pbb.2012.03.021. PMID 22497992. S2CID 24357198.
  4. Jordan K, Jahn F, Aapro M (June 2015). "Recent developments in the prevention of chemotherapy-induced nausea and vomiting (CINV): a comprehensive review". Annals of Oncology. 26 (6): 1081–90. doi:10.1093/annonc/mdv138. PMID 25755107.
  5. Nasir SS, Schwartzberg LS (August 2016). "Recent Advances in Preventing Chemotherapy-Induced Nausea and Vomiting". Oncology. 30 (8): 750–62. PMID 27539626.
  6. Rapoport B, Schwartzberg L, Chasen M, Powers D, Arora S, Navari R, Schnadig I (April 2016). "Efficacy and safety of rolapitant for prevention of chemotherapy-induced nausea and vomiting over multiple cycles of moderately or highly emetogenic chemotherapy". European Journal of Cancer. 57: 23–30. doi:10.1016/j.ejca.2015.12.023. PMID 26851398.
  7. Chasen MR, Rapoport BL (March 2016). "Rolapitant for the treatment of chemotherapy-induced nausea and vomiting: a review of the clinical evidence". Future Oncology. 12 (6): 763–78. doi:10.2217/fon.16.11. PMID 26842387.
  8. ^ "Varuby: EPAR – Product Information" (PDF). European Medicines Agency. 2017-05-31. Archived from the original (PDF) on 2018-03-18. Retrieved 2017-10-11.
  9. ^ "Varuby: EPAR – Public assessment report" (PDF). European Medicines Agency. 2017-05-31. Archived from the original (PDF) on 2018-03-18. Retrieved 2017-10-11.

External links

Antiemetics (A04)
5-HT3 serotonin ion
channel antagonists
5-HT serotonin G-protein
receptor antagonists
CB1 agonists
(cannabinoids)
D2/D3 antagonists
H1 antagonists
(antihistamines)
mACh antagonists
(anticholinergics)
NK1 antagonists
Others
Neurokinin receptor modulators
NK1
NK2
NK3
Portal: Categories: