Misplaced Pages

Vascular bundle

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Vascular bundles) Longitudinal strand of vascular tissue!... in the roots, stems & leaves, of higher plants!!
You can help expand this article with text translated from the corresponding article in French. (February 2019) Click for important translation instructions.
  • View a machine-translated version of the French article.
  • Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Misplaced Pages.
  • Consider adding a topic to this template: there are already 1,674 articles in the main category, and specifying|topic= will aid in categorization.
  • Do not translate text that appears unreliable or low-quality. If possible, verify the text with references provided in the foreign-language article.
  • You must provide copyright attribution in the edit summary accompanying your translation by providing an interlanguage link to the source of your translation. A model attribution edit summary is Content in this edit is translated from the existing French Misplaced Pages article at ]; see its history for attribution.
  • You may also add the template {{Translated|fr|Faisceau cribro-vasculaire}} to the talk page.
  • For more guidance, see Misplaced Pages:Translation.
Types of Vascular bundles
(black: Xylem, green: Phloem, white: Cambium)
A  concentric, periphloematic(Hadrocentric)
B  concentric, perixylematic(Leptocentric)
C  radial with inner xylem, here with four xylem-poles, left closed, right open
D  collateral closed
E  collateral open
F  bicollateral open
Cross section of celery stalk, showing vascular bundles, which includes both phloem and xylem
Detail of vascular bundle: closed, collateral vascular bundles of the stem axis of Zea mays
Vascular bundle in the leaf of Metasequoia glyptostroboides
The vascular bundle of pine leaf showing xylem and phloem

A vascular bundle is a part of the transport system in vascular plants. The transport itself happens in the stem, which exists in two forms: xylem and phloem. Both these tissues are present in a vascular bundle, which in addition will include supporting and protective tissues. There is also a tissue between xylem and phloem, which is the cambium.

The xylem typically lies towards the axis (adaxial) with phloem positioned away from the axis (abaxial). In a stem or root this means that the xylem is closer to the centre of the stem or root while the phloem is closer to the exterior. In a leaf, the adaxial surface of the leaf will usually be the upper side, with the abaxial surface the lower side.

The sugars synthesized by the plant with sun light are transported by the phloem, which is closer to the lower surface. Aphids and leaf hoppers feed off of these sugars by tapping into the phloem. This is why aphids and leaf hoppers are typically found on the underside of a leaf rather than on the top. The position of vascular bundles relative to each other may vary considerably: see stele. The vascular bundle are depend on size of veins



Cross section of a leaf showing parts of a vascular bundleCross section of a leaf showing parts of a vascular bundle

Bundle-sheath cells

The bundle-sheath cells are the photosynthetic cells arranged into a tightly packed sheath around the vein of a leaf. It forms a protective covering on the leaf vein and consists of one or more cell layers, usually parenchyma. Loosely-arranged mesophyll cells lie between the bundle sheath and the leaf surface. The Calvin cycle is confined to the chloroplasts of these bundle sheath cells in C4 plants. C2 plants also use a variation of this structure.

References

  1. Sage, Rowan F.; Khoshravesh, Roxana; Sage, Tammy L. (1 July 2014). "From proto-Kranz to C4 Kranz: building the bridge to C4 photosynthesis". Journal of Experimental Botany. 65 (13): 3341–3356. doi:10.1093/jxb/eru180. PMID 24803502.

Further reading

  • Campbell, N. A. & Reece, J. B. (2005). Photosynthesis. Biology (7th ed.). San Francisco: Benjamin Cummings.

External links

Botany
Subdisciplines
Plant groups
Plant anatomy
Plant cells
Tissues
Vegetative
Reproductive
(incl. Flower)
Surface structures
Plant physiology
Materials
Plant growth
and habit
Reproduction
Plant taxonomy
Practice
  • Lists
  • Related topics
Categories: