Misplaced Pages

Wakeby distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Probability distribution
This article needs attention from an expert in statistics. The specific problem is: New article adapted from NIST document, needs checking and expansion by someone familiar with the topic. WikiProject Statistics may be able to help recruit an expert. (August 2015)
Wakeby distribution
Parameters α , β , γ , δ , ξ {\displaystyle \alpha ,\beta ,\gamma ,\delta ,\xi }
Support

ξ {\displaystyle \xi } to {\displaystyle \infty } , if δ 0 , γ > 0 {\displaystyle \delta \geq 0,\gamma >0}

ξ {\displaystyle \xi } to ξ + ( α / β ) ( γ / δ ) {\displaystyle \xi +(\alpha /\beta )-(\gamma /\delta )} , otherwise
Quantile ξ + α β ( 1 ( 1 p ) β ) γ δ ( 1 ( 1 p ) δ ) {\displaystyle \xi +{\frac {\alpha }{\beta }}(1-(1-p)^{\beta })-{\frac {\gamma }{\delta }}(1-(1-p)^{-\delta })}

The Wakeby distribution is a five-parameter probability distribution defined by its quantile function,

W ( p ) = ξ + α β ( 1 ( 1 p ) β ) γ δ ( 1 ( 1 p ) δ ) {\displaystyle W(p)=\xi +{\frac {\alpha }{\beta }}(1-(1-p)^{\beta })-{\frac {\gamma }{\delta }}(1-(1-p)^{-\delta })} ,

and by its quantile density function,

W ( p ) = w ( p ) = α ( 1 p ) β 1 + γ ( 1 p ) δ 1 {\displaystyle W'(p)=w(p)=\alpha (1-p)^{\beta -1}+\gamma (1-p)^{-\delta -1}} ,

where 0 p 1 {\displaystyle 0\leq p\leq 1} , ξ is a location parameter, α and γ are scale parameters and β and δ are shape parameters.

This distribution was first proposed by Harold A. Thomas Jr., who named it after Wakeby Pond in Cape Cod.

Applications

The Wakeby distribution has been used for modeling distributions of

Parameters and domain

The following restrictions apply to the parameters of this distribution:

  • β + δ 0 {\displaystyle \beta +\delta \geq 0}
  • Either β + δ > 0 {\displaystyle \beta +\delta >0} or β = γ = δ = 0 {\displaystyle \beta =\gamma =\delta =0}
  • If γ > 0 {\displaystyle \gamma >0} , then δ > 0 {\displaystyle \delta >0}
  • γ 0 {\displaystyle \gamma \geq 0}
  • α + γ 0 {\displaystyle \alpha +\gamma \geq 0}

The domain of the Wakeby distribution is

  • ξ {\displaystyle \xi } to {\displaystyle \infty } , if δ 0 {\displaystyle \delta \geq 0} and γ > 0 {\displaystyle \gamma >0}
  • ξ {\displaystyle \xi } to ξ + ( α / β ) ( γ / δ ) {\displaystyle \xi +(\alpha /\beta )-(\gamma /\delta )} , if δ < 0 {\displaystyle \delta <0} or γ = 0 {\displaystyle \gamma =0}

With two shape parameters, the Wakeby distribution can model a wide variety of shapes.

CDF and PDF

The cumulative distribution function is computed by numerically inverting the quantile function given above. The probability density function is then found by using the following relation (given on page 46 of Johnson, Kotz, and Balakrishnan):

f ( x ) = ( 1 F ( x ) ) ( δ + 1 ) α t + γ {\displaystyle f(x)={\frac {(1-F(x))^{(\delta +1)}}{\alpha t+\gamma }}}

where F is the cumulative distribution function and

t = ( 1 F ( x ) ) ( β + δ ) {\displaystyle t=(1-F(x))^{(\beta +\delta )}}

An implementation that computes the probability density function of the Wakeby distribution is included in the Dataplot scientific computation library, as routine WAKPDF.

An alternative to the above method is to define the PDF parametrically as ( W ( p ) , 1 / w ( p ) ) ,   0 p 1 {\displaystyle (W(p),1/w(p)),\ 0\leq p\leq 1} . This can be set up as a probability density function, f ( x ) {\displaystyle f(x)} , by solving for the unique p {\displaystyle p} in the equation W ( p ) = x {\displaystyle W(p)=x} and returning 1 / w ( p ) {\displaystyle 1/w(p)} .

See also

References

  1. ^ "Dataplot reference manual: WAKPDF". NIST. Retrieved 20 August 2015.
  2. Rodda, John C.; Robinson, Mark (2015-08-26). Progress in Modern Hydrology: Past, Present and Future. John Wiley & Sons. p. 75. ISBN 978-1-119-07429-8.
  3. Katchanov, Yurij L.; Markova, Yulia V. (2015-02-26). "On a heuristic point of view concerning the citation distribution: introducing the Wakeby distribution". SpringerPlus. 4 (1): 94. doi:10.1186/s40064-015-0821-1. ISSN 2193-1801. PMC 4352413. PMID 25763305.
  4. John C. Houghton (October 14, 1977). "Birth of a Parent: The Wakeby Distribution for Modeling Flood Flows; Working Paper No. MIT-EL77-033WP" (PDF). MIT.
  5. GRIFFITHS, GEORGE A. (1989-06-01). "A theoretically based Wakeby distribution for annual flood series". Hydrological Sciences Journal. 34 (3): 231–248. Bibcode:1989HydSJ..34..231G. CiteSeerX 10.1.1.399.6501. doi:10.1080/02626668909491332. ISSN 0262-6667.
  6. Katchanov, Yurij L.; Markova, Yulia V. (2015-02-26). "On a heuristic point of view concerning the citation distribution: introducing the Wakeby distribution". SpringerPlus. 4 (1): 94. doi:10.1186/s40064-015-0821-1. ISSN 2193-1801. PMC 4352413. PMID 25763305.
  7. Park, Jeong-Soo; Jung, Hyun-Sook; Kim, Rae-Seon; Oh, Jai-Ho (2001). "Modelling summer extreme rainfall over the Korean peninsula using Wakeby distribution". International Journal of Climatology. 21 (11): 1371–1384. Bibcode:2001IJCli..21.1371P. doi:10.1002/joc.701. ISSN 1097-0088. S2CID 130799481.
  8. Su, Buda; Kundzewicz, Zbigniew W.; Jiang, Tong (2009-05-01). "Simulation of extreme precipitation over the Yangtze River Basin using Wakeby distribution". Theoretical and Applied Climatology. 96 (3): 209–219. Bibcode:2009ThApC..96..209S. doi:10.1007/s00704-008-0025-5. ISSN 1434-4483. S2CID 122488492.
  9. Liu, Mingjun; Li, Wenyuan; Billinton, Roy; Wang, Caisheng; Yu, Juan (2015-10-01). "Modeling tidal current speed using a Wakeby distribution". Electric Power Systems Research. 127: 240–248. doi:10.1016/j.epsr.2015.06.014. ISSN 0378-7796.
  10. Öztekin, Tekin (2011-03-01). "Estimation of the Parameters of Wakeby Distribution by a Numerical Least Squares Method and Applying it to the Annual Peak Flows of Turkish Rivers". Water Resources Management. 25 (5): 1299–1313. doi:10.1007/s11269-010-9745-2. ISSN 1573-1650. S2CID 154960776.
  11. Johnson, Norman Lloyd; Kotz, Samuel; Balakrishnan, Narayanaswamy (1994). Continuous univariate distributions. Vol1 (2 ed.). New York: Wiley. p. 46. ISBN 0-471-58495-9. OCLC 29428092.

External links

Note: this work is based on a NIST document that is in the public domain as a work of the U.S. federal government
Category: