Misplaced Pages

Weakly normal subgroup

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (March 2018)

In mathematics, in the field of group theory, a subgroup H {\displaystyle H} of a group G {\displaystyle G} is said to be weakly normal if whenever H g N G ( H ) {\displaystyle H^{g}\leq N_{G}(H)} , we have g N G ( H ) {\displaystyle g\in N_{G}(H)} .

Every pronormal subgroup is weakly normal.

References

  • Ballester-Bolinches, Adolfo; Esteban-Romero, R. (2003), "On finite T-groups", Journal of the Australian Mathematical Society, 75 (2): 181–191, doi:10.1017/S1446788700003712, hdl:10251/18475, ISSN 1446-7887, MR 2000428
  • Müller, Karl Hans (1966), "Schwachnormale Untergruppen: Eine gemeinsame Verallgemeinerung der normalen und normalisatorgleichen Untergruppen", Rendiconti del Seminario Matematico della Università di Padova. The Mathematical Journal of the University of Padova, 36: 129–157, ISSN 0041-8994, MR 0204528


Stub icon

This abstract algebra-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: