A hamster wheel or running wheel is an exercise device used primarily by hamsters and other rodents, but also by other cursorial animals when given the opportunity. Most of these devices consist of a runged or ridged wheel held on a stand by a single or pair of stub axles. Hamster wheels allow rodents to run even when their space is confined. The earliest dated use of the term "hamster wheel", located by the Oxford English Dictionary, is in a 1949 newspaper advertisement. Squirrel cages featured in an 1885 catalog titled Catalogue of the Osborn M’F’G Co. came with running wheels for the squirrels, just like a hamster cage.
Preferences
Choice tests with Syrian hamsters (Mesocricetus auratus) have shown that they prefer larger wheels; the animals chose a wheel diameter of 35 cm (14 in) over 23 cm (9.1 in), which itself was preferred over 17.5 cm (6.9 in).
Hamsters showed no preference between a relatively uniform running surface made of plastic mesh and a surface made of rungs spaced 9 mm apart, although they did prefer the mesh compared to rungs spaced 12 mm apart, most likely because of the wider space between the rungs allowed their legs to slip through. The hamsters neither preferred nor avoided wheels that had small "speed bumps" installed along the running surface to provide environmental enrichment.
Choice tests with mice have also shown a preference for larger wheels (17.5 cm over 13 cm in diameter) and a preference for plastic mesh over rungs and over solid plastic as a running surface. More acrobatic species, such as the canyon mouse (Peromyscus crinitus) and the deer mouse (Peromyscus maniculatus) can develop preferences for wheels that force the animals to jump, such as square wheels or wheels with hurdles along the running surface.
Use by animals
Like other rodents, hamsters are highly motivated to run on wheels; it is not uncommon to record distances of 9 km (5.6 mi) being run in one night. Other 24-h records include 43 km (27 mi) for rats, 31 km (19 mi) for wild mice, 19 km (12 mi) for lemmings, 16 km (9.9 mi) for laboratory mice, and 8 km (5.0 mi) for gerbils. Hypotheses to explain such high levels of running in wheels include a need for activity, substitute for exploration, and stereotypic behaviour. However, free wild mice will run on wheels installed in the field, which speaks against the notion of stereotypic behavior induced by captivity conditions. Alternatively, various experimental results strongly indicate that wheel running, like play or the endorphin or endocannabinoid release associated with the 'runner's high', is self-rewarding. Wheel use is highly valued by several species as shown in consumer demand studies which require an animal to work for a resource, i.e. bar-press or lift weighted doors. This makes running wheels a popular type of enrichment to the captivity conditions of rodents.
Captive animals continue to use wheels even when provided with other types of enrichment. In one experiment, Syrian hamsters that could use tunnels to access five different cages each containing a toy showed no more than a 25% reduction in running-wheel use compared to hamsters housed in a single cage without toys (except for the running wheel). In another study, female Syrian hamsters housed with a nestbox, bedding, hay, paper towels, cardboard tubes, and branches used a wheel regularly and benefitted from it as indicated by showing less stereotypic bar-gnawing and producing larger litters of young compared to females kept under the same conditions but without a wheel. Laboratory mice were prepared to perform more switch presses to enter a cage containing a running wheel compared to several meters of Habitrail tubing or a torus of Habitrail tubing.
Running in wheels can be so intense in hamsters that it may result in foot lesions, which appear as small cuts on the paw pads or toes. Such paw wounds rapidly scab over and do not prevent hamsters from continuing to run in their wheel.
A hamster in a running wheel equipped with a generator can generate up to 500 mW electric power, enough for illuminating small LED lamps.
Use in science
Voluntary wheel running is one of the most widely used indicators of activity and wake-time in research on circadian rhythms and other aspects of chronobiology. Miniature running wheels have even been used to measure the circadian locomotor activity of cockroaches. For rodents, running wheels are easier to set up and automate than other techniques of activity recording such as bar-gnawing and spring-suspended or knife-edge balanced cages.
In rodents, voluntary exercise is almost always measured by the use of wheels. This makes running wheels the tool of choice in research on the effects of exercise and voluntary activity on metabolism, obesity, and pain.
The neurotransmitter systems involved in wheel-running behavior have received considerable study. Recent evidence suggests that changes in both dopaminergic and serotonergic tone alter running-wheel activity. For example, one study in mice has shown that several antidepressant medications (all of which directly or indirectly enhance serotonergic tone) suppress running-wheel activity without suppressing general locomotion. The endocannabinoid system also contributes to wheel running in a sex-specific manner in rodents. Mice from lines that have been selectively bred for high levels of voluntary wheel running have altered responsiveness to drugs that alter dopamine and endocannabinoid signalling, and enlarged midbrains.
Animal welfare considerations
Tierärztliche Vereinigung für Tierschutz (TVT) recommends wheels should be at least 20 cm (8") for dwarf hamsters and at least 30 cm (12") for Syrian hamsters, since smaller diameters lead to permanent spinal curvatures, especially in young animals. They also recommend a solid running surface because rungs or mesh can cause injury. It has been published in several books about small pet care as far back as 2000 that rungs and mesh wheels can cause injuries.
Most wheels are constructed of steel, wood or plastic, each having advantages and disadvantages. Solid wheels are safer for all animals because the animal's feet or legs cannot get trapped and injured between rungs. There are wheels in all these materials that are solid. Plastic wheels are fine for some animals. However, some rodents (e.g. gerbils or degus) will quickly chew and destroy plastic wheels but not steel versions.
Guinea pigs cannot use exercise wheels, and attempting to use one may cause injury to a guinea pig.
Hamster ball
This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (October 2023) (Learn how and when to remove this message) |
A related exercise device, the hamster ball, is a hollow plastic ball into which a pet can be temporarily placed. The ball allows the pet to freely roll around on the floor to explore and exercise while preventing escape.
Recent theory suggests that hamster balls are not ideal for exercise outside of the cage. The balls prevent the rodent from using touch (whiskers) and smell to navigate the area. It also restricts airflow and can catch toes or tails in the slits meant for airflow.
Running disc
A related exercise device is a running disc. This is a rotatable shallow bowl, or slightly concave disc, which is set at an angle to the horizontal. Some commercial refuges for caged rodents have a disc mounted on the roof at a slight angle. The rodents run on the rim of the disc in a similar way to running in hamster wheels.
See also
References
- Los Angeles Times, 9 Oct. 1949, p. B20/4 (advt.), referenced in Oxford English Dictionary, Draft Additions, Sep. 2007, under entry “Hamster.”
- "A Squirrel's Life – Smithsonian Libraries and Archives / Unbound". Smithsonian Libraries and Archives. Archived from the original on 2020-03-28. Retrieved 2024-08-17.
- ^ Reebs, S. G.; St-Onge, P (2005). "Running wheel choice by Syrian hamsters". Laboratory Animals. 39 (4): 442–451. doi:10.1258/002367705774286493. PMID 16197712. S2CID 21311908.
- Mrosovsky, N.; Salmon, P.A.; Vrang, N. (1998). "Revolutionary science: an improved running wheel for hamsters". Chronobiology International. 15 (2): 147–158. doi:10.3109/07420529808998679. PMID 9562919.
- Banjanin, S., and Mrosovsky, N., 2000, Preferences of mice, Mus musculus, for different types of running wheel, Laboratory Animals, 34: 313–318.
- Kavanau, J.L., and Brant, D.H., 1965, Wheel-running preferences of Peromyscus, Nature, 208: 597–98
- Kavanau, J.L., 1966, Wheel-running preferences of mice, Zeitschrift für Tierpsychologie 23: 858–66
- Kavanau, J.L., 1967, Behavior of captive white-footed mice, Science, 155: 1623–39.
- ^ Sherwin, C.M., 1998, Voluntary wheel running: A review and novel interpretation, Animal Behaviour, 56: 11–27
- Meijer, Johanna H.; Robbers, Yuri (2014), "Wheel running in the wild", Proceedings of the Royal Society B, 281 (1786): 20140210, doi:10.1098/rspb.2014.0210, PMC 4046404, PMID 24850923
- Raichlen, D. A., A. D. Foster, G. L. Gerdeman, A. Sellier, and A. Giuffrida. 2012. Wired to run: exercise-induced endocannabinoid signaling in humans and cursorial mammals with implications for the 'runner's high'. Journal of Experimental Biology 215:1331-1336.
- Novak, C.M., Burghardt, P.R. and Levine, J.A., 2012, The use of a running wheel to measure activity in rodents: Relationship to energy balance, general activity, and reward, Neuroscience and Biobehavioral Reviews, 36: 1001–1014
- Belke, T.W., and Wagner, J.P. 2005. The reinforcing property and the rewarding aftereffect of wheel running in rats: a combination of two paradigms. Behavioral Processes 68: 165-172.
- Belke, T.W. and Garland, T., Jr., 2007, A brief opportunity to run does not function as a reinforcer for mice selected for high daily wheel-running rates, Journal of the Experimental Analysis of Behavior, 88: 199-213
- Reebs, S.G.; Maillet, D. (2003). "Effect of cage enrichment on the daily use of running wheels by Syrian hamsters". Chronobiology International. 20 (1): 9–20. doi:10.1081/CBI-120018329. PMID 12638687. S2CID 21925891.
- Gebhardt-Henrich, S.G., Vonlanthen, E.M., and Steiger, A., 2005, How does the running wheel affect the behavior and reproduction of golden hamsters kept as pets, Applied Animal Behaviour Science, 95: 199-203.
- Sherwin, C.M., 1998, The use and perceived importance of three resources which provide caged laboratory mice the opportunity of extended locomotion, Applied Animal Behaviour Science, 55: 353-367.
- Beaulieu, A.; Reebs, S.G. (2009). "Effects of bedding material and running wheel surface on paw wounds in male and female Syrian hamsters". Laboratory Animals. 43 (1): 85–90. doi:10.1258/la.2008.007088. PMID 19001065. S2CID 22308514.
- Veillette, M.; Guitard, J.; Reebs, S.G. (2010). "Cause and possible treatments of foot lesions in captive Syrian hamsters (Mesocricetus auratus)". Veterinary Medicine International. 2010: 951708. doi:10.4061/2010/951708. PMC 2896862. PMID 20613965.
- Dunlap, J.C., Loros, J.J., and DeCoursey, P.J. 2004. Chronobiology: Biological Timekeeping. Sinauer Associates, Sunderland MA.
- Binkley, S. 1990. The clockwork sparrow: time, clocks, and calendars in biological organisms. Prentice-Hall, Englewood Cliffs NJ.
- Roberts. S. 1965. Photoreception and entrainment of cockroach activity rhythms. Science 148: 958-959.
- Morin, L. 1978. Rhythmicity of hamster gnawing: Ease of measurement and similarity to running activity. Physiology and Behavior 21: 317-320
- Aschoff, J., Figala, J., and Poppel, E. 1973. Circadian rhythms of locomotor activity in the golden hamster (Mesocricetus auratus) measured with two different techniques. Journal of Comparative and Physiological Psychology 85: 20-28.
- Garland, T., Jr., H. Schutz, M. A. Chappell, B. K. Keeney, T. H. Meek, L. E. Copes, W. Acosta, C. Drenowatz, R. C. Maciel, G. van Dijk, C. M. Kotz, and J. C. Eisenmann. 2011. The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. Journal of Experimental Biology 214:206-229.
- Coutinho A.E., Fediuc S., Campbell J.E., and Riddell, M.C. 2006. Metabolic effects of voluntary wheel running in young and old Syrian golden hamsters. Physiology and Behavior 87: 360-367.
- Gattermann R., Weinandy R., and Fritzsche P. 2004. Running-wheel activity and body composition in golden hamsters (Mesocricetus auratus). Physiology and Behavior 82: 541-544.
- Kandasamy, R., Calsbeek, J. J., & Morgan, M. M. (2016). Home cage wheel running is an objective and clinically relevant method to assess inflammatory pain in male and female rats. Journal of Neuroscience Methods, 263, 115-122.
- Cobos, E. J., Ghasemlou, N., Araldi, D., Segal, D., Duong, K., & Woolf, C. J. (2012). Inflammation-induced decrease in voluntary wheel running in mice: a nonreflexive test for evaluating inflammatory pain and analgesia. PAIN®, 153(4), 876-884.
- Rhodes, J.S., Gammie, S.C. and Garland, T., Jr., 2005, Neurobiology of mice selected for high voluntary wheel-running activity, Integrative and Comparative Biology, 45: 438-455.
- Weber, M; Talmon S; Schulze I; Boeddinghaus C; Gross G; Schoemaker H; Wicke KM (May 2009). "Running wheel activity is sensitive to acute treatment with selective inhibitors for either serotonin or norepinephrine reuptake". Psychopharmacology. 203 (4): 753–762. doi:10.1007/s00213-008-1420-4. PMID 19104776. S2CID 25424870.
- Keeney, B.K., Meek, T.H., Middleton, K.M., Holness, L. F. and Garland, T., Jr., 2012, Sex differences in cannabinoid receptor-1 (CB1) pharmacology in mice selectively bred for high voluntary wheel-running behavior, Pharmacology Biochemistry and Behavior, 101: 528-537.
- Kolb, E. M., E. L. Rezende, L. Holness, A. Radtke, S. K. Lee, A. Obenaus, and T. Garland, Jr. 2013. Mice selectively bred for high voluntary wheel running have larger midbrains: support for the mosaic model of brain evolution. Journal of Experimental Biology 216:515-523.
- "Leaflet No. 62 - Pets, accessories contrary to animal welfare" (PDF). TVT (in German). Germany. Retrieved 21 June 2020.
- Meredith, Susan (2000). Hamsters. Tulsa, Okla. : EDC Pub. p. 30. ISBN 9780794507961. Retrieved 21 June 2020.
- Hill, Lorraine (2004). Caring for your hamster. Franklin, TN : Dalmatian Press. p. 64. ISBN 9781403708854. Retrieved 21 June 2020.
- Rayner, Matthew (2004). Hamster. Milwaukee, Wis. : Gareth Stevens. ISBN 9780836846171. Retrieved 21 June 2020.
- Alderton, David (2002). Hamster : a practical guide to caring for your hamster. London: Collins. p. 128. ISBN 9780007122820. Retrieved 21 June 2020.
- Hibbert, Clare (2004). Looking after your pet Hamster. Smart Apple Media. p. 32. ISBN 9781583404331. Retrieved 21 June 2020.
- "Guinea Pig Care Guide". Guinea Lynx. Retrieved 7 September 2023.
- Mockridge, Alex (2020-08-15). "Hamster Exercise Balls: Pros and Cons". The Nature Nook. Retrieved 2024-02-27.
- DeMaio, Antonio. "supp1-3111587.pdf". doi:10.1109/tsp.2021.3111587/mm1. Retrieved 2024-02-27.
{{cite journal}}
: Cite journal requires|journal=
(help) - De Bono, J. P., D. Adlam, D. J. Paterson, and K. M. Channon. 2005. Novel quantitative phenotypes of exercise training in mouse models. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 290:R926–R934.