Misplaced Pages

Willerton's fish

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In knot theory, Willerton's fish is an unexplained relationship between the first two Vassiliev invariants of a knot. These invariants are c2, the quadratic coefficient of the Alexander–Conway polynomial, and j3, an order-three invariant derived from the Jones polynomial.

When the values of c2 and j3, for knots of a given fixed crossing number, are used as the x and y coordinates of a scatter plot, the points of the plot appear to fill a fish-shaped region of the plane, with a lobed body and two sharp tail fins. The region appears to be bounded by cubic curves, suggesting that the crossing number, c2, and j3 may be related to each other by not-yet-proven inequalities.

This shape is named after Simon Willerton, who first observed this phenomenon and described the shape of the scatterplots as "fish-like".

References

  1. ^ Chmutov, S.; Duzhin, S.; Mostovoy, J. (2012), "14.3 Willerton's fish and bounds for c2 and j3", Introduction to Vassiliev knot invariants (PDF), Cambridge University Press, Cambridge, pp. 419–420, arXiv:1103.5628, doi:10.1017/CBO9781139107846, ISBN 978-1-107-02083-2, MR 2962302.
  2. ^ Dunin-Barkowski, P.; Sleptsov, A.; Smirnov, A. (2013), "Kontsevich integral for knots and Vassiliev invariants", International Journal of Modern Physics A, 28 (17): 1330025, arXiv:1112.5406, Bibcode:2013IJMPA..2830025D, doi:10.1142/S0217751X13300251, MR 3081407. See in particular Section 4.2.1, "Willerton's fish and families of knots".
  3. Willerton, Simon (2002), "On the first two Vassiliev invariants", Experimental Mathematics, 11 (2): 289–296, MR 1959269.
Category: