Misplaced Pages

WISE 0855−0714: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 16:01, 10 October 2024 edit21.Andromedae (talk | contribs)Extended confirmed users, IP block exemptions8,173 edits kmTag: 2017 wikitext editor← Previous edit Latest revision as of 06:19, 9 December 2024 edit undoNrco0e (talk | contribs)Extended confirmed users18,650 edits fix link 
(22 intermediate revisions by 3 users not shown)
Line 17: Line 17:
{{Starbox character {{Starbox character
| type = ] | type = ]
| class = ]<ref name="Kirkpatrick et al. 2021"/><ref name="Mamajek">{{cite web |last1=Mamajek |first1=Eric |title=A Modern Mean Dwarf Stellar Color and Effective Temperature Sequence |url=http://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt |access-date=7 February 2021}}</ref> | class = ]<ref name="Kirkpatrick2021"/><ref name="Mamajek">{{cite web |last1=Mamajek |first1=Eric |title=A Modern Mean Dwarf Stellar Color and Effective Temperature Sequence |url=http://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt |access-date=7 February 2021}}</ref>
| appmag_1_passband = J | appmag_1_passband = J
| appmag_1 = {{val|25.00|0.53}}<ref name="SIMBAD"/> | appmag_1 = {{val|25.00|0.53}}<ref name="SIMBAD"/>
Line 27: Line 27:
| prop_mo_ra = {{val|p=−|8123.7|1.3|fmt=commas}} | prop_mo_ra = {{val|p=−|8123.7|1.3|fmt=commas}}
| prop_mo_dec = {{val|673.2|1.3}} | prop_mo_dec = {{val|673.2|1.3}}
| pm_footnote = <ref name="Kirkpatrick et al. 2021" /> | pm_footnote = <ref name="Kirkpatrick2021" />
| parallax = 439.0 | parallax = 439.0
| p_error = 2.4 | p_error = 2.4
| parallax_footnote = <ref name="Kirkpatrick et al. 2021" /> | parallax_footnote = <ref name="Kirkpatrick2021" />
| absmag_v = <!--Absolute magnitude (])--> | absmag_v = <!--Absolute magnitude (])-->
}} }}
Line 64: Line 64:
{{Starbox end}} {{Starbox end}}


'''WISE 0855−0714''' (full designation '''WISE J085510.83−071442.5''',<ref name="Luhman20140421" /> or '''W0855''' for short) is a ] {{val|2.28|0.01|u=]s}} ({{val|7.43|0.04|u=]s}})<ref name="Kirkpatrick et al. 2021" /> from Earth, therefore the fourth-],<ref name="NASA20140425" /> the discovery of which was announced in April 2014 by ] using data from the ] (WISE).<ref name="NASA20140425" /> {{As of|2014}}, WISE 0855−0714 has the third-highest ] ({{val|8151.6|1.8|fmt=commas|u=]}})<ref name="Kirkpatrick et al. 2021" /> after ] ({{val|10300|fmt=commas|u=mas/yr}}) and ] ({{val|8600|fmt=commas|u=mas/yr}})<ref name="Luhman20140421" /> and the fourth-largest ] ({{val|439.0|2.4|u=]}})<ref name="Kirkpatrick et al. 2021" /> of any known star or brown dwarf. It is also the coldest object of its type found in interstellar space, having a temperature of about {{convert|285|K|C F}}.<ref name="Luhman2024"/> '''WISE 0855−0714''' (full designation '''WISE J085510.83−071442.5''',<ref name="Luhman2014" /> or '''W0855''' for short) is a ] of ], located {{convert|7.4|ly|pc|abbr=off|lk=on}} from the Sun in the ] ]. It is the fourth-] and was discovered by ] in 2013 using data from the ] (WISE). It is the coldest brown dwarf found in interstellar space, having a temperature of about {{convert|285|K|C F}}.<ref name="Luhman2024"/> It has an estimated mass between 3–10 ]es, which makes it a ] below the 13 Jupiter mass limit for ].


==Characterization== == Characterization ==


===Observations=== === Observations ===
WISE 0855−0714 was first imaged by the WISE telescope on 4 May 2010 during its primary mission of surveying the entire sky.<ref name="Luhman2014"/> It was later discovered by ] in March 2013, who noticed the object's unusually high ] while searching for ] in WISE images.<ref name="Luhman2013"/><ref name="NASA20140425" /> In the interest of confirming the object's ] and nearby distance to the Sun, Luhman made follow-up observations with the ] and the ] telescope in 2013–2014.<ref name="NASA20140425" /><ref name="Luhman2014"/> The discovery of the object was announced in a NASA press release in April 2014.<ref name="NASA20140425" />
The WISE object was detected in March 2013, and follow-up observations were taken by the ] and the ] telescope.<ref name="NASA20140425" />


Since WISE 0855−0714 is an isolated object, its ] primarily comes from ].<ref name="NASA20140425" /> WISE 0855−0714's temperature is low enough that it roughly matches ], which means WISE 0855−0714's luminosity is very low and primarily emits ] light as thermal radiation.<ref name="NASA20140425" /> Hence, it is best observed with ] such as WISE and the ] (JWST).<ref name="Luhman2024"/> WISE 0855−0714 has been detected in ] ]s as short as {{val|1.15|u=um}}—in this ] wavelength, the object appears extremely dim with an ] of 26.3.<ref name="Schneider2016"/><ref name="Osorio2016"/> WISE 0855−0714's brightness decreases with decreasing wavelength, so the object is practically invisible in ].<ref name="NASA20140425" />
===Distance===
Based on direct observations, WISE 0855−0714 has a large ], which specifically relates to its distance from the Solar System. This phenomenon results in a distance of around {{val|7.43|0.04|u=light-years}},<ref name="Kirkpatrick et al. 2021" /> with a small ] due to the strength of the parallax effect and the clarity of observations. WISE 0855−0714 also has an exceptionally high ].<ref name="Kirkpatrick et al. 2021" />


=== Distance and proper motion ===
===Spectrometry===
Based on direct observations, WISE 0855−0714 has a large ] of {{val|439.0|2.4|u=]}}, which corresponds to a distance of around {{val|2.28|0.01|u=]s}} ({{val|7.43|0.04|u=]s}}).<ref name="Kirkpatrick2021"/> This makes WISE 0855−0714 the fourth-]. WISE 0855−0714 also has an exceptionally high ] of {{val|8151.6|1.8|fmt=commas|u=]}},<ref name="Kirkpatrick2021"/> the third-highest after ] ({{val|10300|fmt=commas|u=mas/yr}}) and ] ({{val|8600|fmt=commas|u=mas/yr}})<ref name="Luhman2014" />
Its luminosity in different bands of the thermal infrared in combination with its ]—because of its known distance—was used to place it in context of different models; the best characterization of its brightness was in the ''W2'' band of {{val|4.6|u=µm}} at an ] of {{val|13.89|0.05}}, though it was brighter into the deeper infrared.<ref name="Luhman20140421" /> Infrared images taken with the ] suggest evidence of ] clouds below ] clouds.<ref name="Faherty2014" />


=== Spectrometry ===
] spectra in the L- and M-band were taken with the GNIRS instrument on the ]. The ] (4.5–5.1 μm) spectrum is dominated by water vapour (H<sub>2</sub>O) absorption. The ] (3.4–4.14 μm) spectrum is dominated by ] absorption. Both the M- and L-band surprisingly have no detection of ] (PH<sub>3</sub>), which appears in the atmosphere of ]. The M-band spectrum shows evidence for water ice clouds and the near-infrared photometry WISE 0855 is faint compared to models, suggesting an additional absorber, probably clouds made of ] (NH<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>), which are below the water ice clouds.<ref>{{Cite journal |last1=Skemer |first1=Andrew J. |last2=Morley |first2=Caroline V. |last3=Allers |first3=Katelyn N. |last4=Geballe |first4=Thomas R. |last5=Marley |first5=Mark S. |last6=Fortney |first6=Jonathan J. |last7=Faherty |first7=Jacqueline K. |last8=Bjoraker |first8=Gordon L. |last9=Lupu |first9=Roxana |date=2016-08-01 |title=The First Spectrum of the Coldest Brown Dwarf |journal=The Astrophysical Journal |volume=826 |issue=2 |pages=L17 |doi=10.3847/2041-8205/826/2/L17 |issn=0004-637X|arxiv=1605.04902 |bibcode=2016ApJ...826L..17S |doi-access=free }}</ref><ref>{{Cite journal |last1=Morley |first1=Caroline V. |last2=Skemer |first2=Andrew J. |last3=Allers |first3=Katelyn N. |last4=Marley |first4=Mark. S. |last5=Faherty |first5=Jacqueline K. |last6=Visscher |first6=Channon |last7=Beiler |first7=Samuel A. |last8=Miles |first8=Brittany E. |last9=Lupu |first9=Roxana |last10=Freedman |first10=Richard S. |last11=Fortney |first11=Jonathan J. |last12=Geballe |first12=Thomas R. |last13=Bjoraker |first13=Gordon L. |date=2018-05-01 |title=An L Band Spectrum of the Coldest Brown Dwarf |journal=The Astrophysical Journal |volume=858 |issue=2 |pages=97 |doi=10.3847/1538-4357/aabe8b |arxiv=1804.07771 |bibcode=2018ApJ...858...97M |issn=0004-637X|doi-access=free }}</ref> An approved JWST proposal describes how the team is planning to use a near-infrared time-series to study the ] in the atmosphere of WISE 0855 with ].<ref>{{Cite journal |last1=Skemer |first1=Andrew |last2=Miles |first2=Brittany E. |last3=Morley |first3=Caroline |last4=Allers |first4=Katelyn |last5=Bjoraker |first5=Gordon |last6=Carter |first6=Aarynn |last7=Cushing |first7=Michael C. |last8=Faherty |first8=Jacqueline Kelly |last9=Fortney |first9=Jonathan |last10=Freedman |first10=Richard |last11=Geballe |first11=Thomas R. |last12=Line |first12=Michael |last13=Lupu |first13=Roxana |last14=Marley |first14=Mark S. |last15=Martin |first15=Emily |date=2021-03-01 |title=Water Ice Clouds and Weather on the Coldest Brown Dwarf |url=https://ui.adsabs.harvard.edu/abs/2021jwst.prop.2327S |journal=JWST Proposal. Cycle 1 |pages=2327|bibcode=2021jwst.prop.2327S }}</ref>
Its luminosity in different bands of the thermal infrared in combination with its ]—because of its known distance—was used to place it in context of different models; the best characterization of its brightness was in the ''W2'' band of {{val|4.6|u=µm}} at an ] of {{val|13.89|0.05}}, though it was brighter into the deeper infrared.<ref name="Luhman2014" /> Infrared images taken with the ] suggest evidence of ] clouds below ] clouds.<ref name="Faherty2014" />


] spectra in the L- and M-band were taken with the GNIRS instrument on the ]. The ] (4.5–5.1 μm) spectrum is dominated by water vapour (H<sub>2</sub>O) absorption. The ] (3.4–4.14 μm) spectrum is dominated by ] absorption. Both the M- and L-band surprisingly have no detection of ] (PH<sub>3</sub>), which appears in the atmosphere of ]. The M-band spectrum shows evidence for water ice clouds and the near-infrared photometry WISE 0855 is faint compared to models, suggesting an additional absorber, probably clouds made of ] (NH<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>), which are below the water ice clouds.<ref name="Skemer2016"/><ref name="Morley2018"/> An approved JWST proposal describes how the team is planning to use a near-infrared time-series to study the ] in the atmosphere of WISE 0855 with ].<ref>{{Cite journal |last1=Skemer |first1=Andrew |last2=Miles |first2=Brittany E. |last3=Morley |first3=Caroline |last4=Allers |first4=Katelyn |last5=Bjoraker |first5=Gordon |last6=Carter |first6=Aarynn |last7=Cushing |first7=Michael C. |last8=Faherty |first8=Jacqueline Kelly |last9=Fortney |first9=Jonathan |last10=Freedman |first10=Richard |last11=Geballe |first11=Thomas R. |last12=Line |first12=Michael |last13=Lupu |first13=Roxana |last14=Marley |first14=Mark S. |last15=Martin |first15=Emily |date=2021-03-01 |title=Water Ice Clouds and Weather on the Coldest Brown Dwarf |url=https://ui.adsabs.harvard.edu/abs/2021jwst.prop.2327S |journal=JWST Proposal. Cycle 1 |pages=2327|bibcode=2021jwst.prop.2327S }}</ref>
Observations with NIRSpec detected methane (CH<sub>4</sub>), ] (H<sub>2</sub>O), ] (NH<sub>3</sub>) and ] (CO) in the atmosphere, but was not able to confirm any ] (PH<sub>3</sub>) or ] (CO<sub>2</sub>) in the atmosphere. Water ice clouds are also not confirmed and the spectrum is well matched with a cloudless model. Future modelling and inclusion of observations at longer wavelengths with ] might help to reveal clouds in WISE 0855.<ref name="Luhman2024"/>

Observations with ] detected methane (CH<sub>4</sub>), ] (H<sub>2</sub>O), ] (NH<sub>3</sub>) and ] (CO) in the atmosphere, but was not able to confirm any ] (PH<sub>3</sub>) or ] (CO<sub>2</sub>) in the atmosphere. Water ice clouds are also not confirmed and the spectrum is well matched with a cloudless model.<ref name="Luhman2024"/> Observations with ] showed a water vapor depletion and a water abundance that is variable with ]. This is consistent with water ] out in the upper atmosphere. The observations did however not detect any water ice clouds, which were predicted in previous studies. This discrepancy is explained with the rainout of the water: Water condenses into particles in the upper atmosphere, which quickly sink into the lower atmosphere. Clouds only form if upward mixing is present. A similar process is present for ] in ] and ]. A direct rainout would suggest weak mixing, but disequilibrium chemistry suggest rigours mixing. Future variable studies might resolve if upward mixing or settling is the dominant process. Cloud models however potentially detected deep ammonium dihydrogen phosphate (NH<sub>4</sub>)(H<sub>2</sub>PO<sub>4</sub>) clouds. The observations also detected ]H<sub>3</sub> for the first time in WISE 0855. The atmosphere has a mass fraction of <sup>14</sup>NH<sub>3</sub>/<sup>15</sup>NH<sub>3</sub> = {{val|332|63|43}}, meaning it has about 99.7% <sup>14</sup>N and about 0.3% <sup>15</sup>N. Compared to solar values and the ratio of ], the atmosphere of WISE 0855 is enriched in <sup>15</sup>N. The nitrogen isotope ratio is closer to today's <sup>15</sup>N-enriched ]. This could mean that WISE 0855 formed from a younger cloud, but more measurements of <sup>15</sup>N in other brown dwarfs are needed to establish evolutionary trends.<ref name="Kühnle2024">{{Cite arXiv |eprint =2410.10933 |class=astro-ph |last1=Kühnle |first1=H. |title=Water depletion and 15NH3 in the atmosphere of the coldest brown dwarf observed with JWST/MIRI |date=2024-10-14 |last2=Patapis |first2=P. |last3=Mollière |first3=P. |last4=Tremblin |first4=P. |last5=Matthews |first5=E. |last6=Glauser |first6=A. M. |last7=Whiteford |first7=N. |last8=Vasist |first8=M. |last9=Absil |first9=O.}}</ref> In November 2024 a team used archived and new NIRSpec data to detect deuterated methane (CH<sub>3</sub>D) and about one ] PH<sub>3</sub> in WISE 0855. This detection of ] showed that WISE 0855 has a mass below the deuterium-burning-limit. The low amount of PH<sub>3</sub> is on the other hand in disagreement with predictions, showing incomplete knowledge of ] chemistry.<ref name="Rowland2024"/>


=== Variability === === Variability ===
Variability of WISE 0855 in the infrared was measured with ]. A relative small ] of 4–5% was measured. Water ice cloud models predicted a large amplitude. This small amplitude might suggest that the ] of WISE 0855 have very small deviation in cloud coverage. The light curve is too irregular to produce a good fit and rotation periods between 9.7 and 14 hours were measured.<ref>{{Cite journal |last1=Esplin |first1=T. L. |last2=Luhman |first2=K. L. |last3=Cushing |first3=M. C. |last4=Hardegree-Ullman |first4=K. K. |last5=Trucks |first5=J. L. |last6=Burgasser |first6=A. J. |last7=Schneider |first7=A. C. |date=2016-11-01 |title=Photometric Monitoring of the Coldest Known Brown Dwarf with the Spitzer Space Telescope |journal=The Astrophysical Journal |volume=832 |issue=1 |pages=58 |doi=10.3847/0004-637X/832/1/58 |arxiv=1609.05850 |bibcode=2016ApJ...832...58E |issn=0004-637X|doi-access=free }}</ref> Variability of WISE 0855 in the infrared was measured with ]. A relative small ] of 4–5% was measured. Water ice cloud models predicted a large amplitude. This small amplitude might suggest that the ] of WISE 0855 have very small deviation in cloud coverage. The light curve is too irregular to produce a good fit and rotation periods between 9.7 and 14 hours were measured.<ref name="Esplin2016"/>


===Physical parameters=== === Physical parameters ===
Based on models of brown dwarfs WISE 0855−0714's is estimated to have a mass of {{Jupiter mass|3 to 10|jup=y|link=yes}}.<ref name="NASA20140425" /> This mass is in the range of a ] or other ]. The mass and age of WISE 0855−0714 are neither known with certainty, but can be constrained with its known present-day temperature. The age of WISE 0855−0714 depends on its mass; a lower mass would lead to a faster rate of cooling and thus a younger age for WISE 0855−0714, whereas a higher mass would lead to a slower rate of cooling and thus an older age for WISE 0855−0714.<ref name="Luhman2014"/> Assuming an age range of 1–10 billion years, evolutionary models for brown dwarfs predict that WISE 0855−0714 should have a mass between {{Jupiter mass|3 to 10|jup=y|link=yes}}.<ref name="NASA20140425"/><ref name="Luhman2014"/> This mass is in the range of a ] or ].


As of 2003, the ] considers an object with a mass above {{Jupiter mass|13|jup=y}}, capable of fusing ], to be a brown dwarf. A lighter object and one orbiting another object is considered a planet.<ref name="workinggroup" /> However, if the distinction is based on how the object formed then it might be considered a failed star, a theory advanced for the object ].<ref name="amspace20140428" /> As of 2003, the ] considers an object with a mass above {{Jupiter mass|13|jup=y}}, capable of fusing ], to be a brown dwarf. A lighter object and one orbiting another object is considered a planet.<ref name="workinggroup" /> However, if the distinction is based on how the object formed then it might be considered a failed star, a theory advanced for the object ].<ref name="amspace20140428" />


Combining its luminosity, distance, and mass it is estimated to be the coldest-known brown dwarf, with a modeled effective temperature of {{convert|225|to|260|K|C F}}, depending on the model.<ref name="NASA20140425" /> Models matching the NIRSpec spectrum are well fitted with a temperature of 285 K (12°C; 53 °F).<ref name="Luhman2024"/> Combining its luminosity, distance, and mass it is estimated to be the coldest-known brown dwarf, with a modeled effective temperature of {{convert|225|to|260|K|C F}}, depending on the model.<ref name="NASA20140425" /> Models matching the NIRSpec spectrum are well fitted with a temperature of {{convert|285|K|C F}}.<ref name="Luhman2024"/>


== Gallery == == Gallery ==
Line 96: Line 98:
File:WISE 0855-0714 NIRCam Movement.jpg|JWST ] observation of W0855 (orange "star" at the center) showing the movement over about half a year. File:WISE 0855-0714 NIRCam Movement.jpg|JWST ] observation of W0855 (orange "star" at the center) showing the movement over about half a year.
File:Angular map of fusors around Sol within 9ly (large).png|The position of WISE 0855−0714 on a ] map among all stellar objects or ] within 9 light years (ly) from the map's center, the Sun (Sol). The diamond-shapes are their positions entered according to ] in ] (indicated at the edge of the map's reference disc), and according to their ]. The second mark shows each's distance from Sol, with the ] circles indicating the distance in steps of one ly. File:Angular map of fusors around Sol within 9ly (large).png|The position of WISE 0855−0714 on a ] map among all stellar objects or ] within 9 light years (ly) from the map's center, the Sun (Sol). The diamond-shapes are their positions entered according to ] in ] (indicated at the edge of the map's reference disc), and according to their ]. The second mark shows each's distance from Sol, with the ] circles indicating the distance in steps of one ly.
File:Class-iii cubicapoc.png|No water ice clouds are detected in WISE 0855, but maybe deep ammonium dihydrogen phosphate clouds exist. This would make it similar to class III (cloudless) planets on the ] scale
File:Class-ii cubicapoc.png|Artist's impression of a water cloud planet. It was suggested that WISE 0855 has water ice clouds.
</gallery> </gallery>


Line 105: Line 107:
* ] * ]
* ] * ]
*] * ]
*] * ]
*] * ]


{{div col end}} {{div col end}}


== Notes == == Notes ==
{{Notelist|refs= {{notelist|refs=


{{efn | name=radius | Applying the ] with a nominal ] ] of 5,772&nbsp;]: {{efn|name=radius|Applying the ] with a nominal ] ] of 5,772&nbsp;]:
:<math>\sqrt{\biggl(\frac{5,772}{285}\biggr)^4 \cdot 10^{-7.305}} = 0.091298\ R_\odot</math>. Using the ] value of 695,700&nbsp;km, the calculated radius of WISE 0855-0714 converts to approximately 63,500&nbsp;km, or {{val|0.89|u=Jupiter radius}} when dividing by the nominal ] value of 71,492&nbsp;km.}} :<math>\sqrt{\biggl(\frac{5,772}{285}\biggr)^4 \cdot 10^{-7.305}} = 0.091298\ R_\odot</math>. Using the ] value of 695,700&nbsp;km, the calculated radius of WISE 0855-0714 converts to approximately 63,500&nbsp;km, or {{val|0.89|u=Jupiter radius}} when dividing by the nominal ] value of 71,492&nbsp;km.}}


{{Efn|name=luminosity|Derived from a luminosity logarithm of -7.305}} {{efn|name=luminosity|Derived from a ] logarithm of –7.305 given in Luhman et al. 2024}}
}} }}

==References==
== References ==
{{reflist |refs=
{{reflist|30em|refs=


<ref name="SIMBAD">{{cite simbad |title=WISEA J085510.74-071442.5 |access-date=15 May 2017}}</ref> <ref name="SIMBAD">{{cite simbad |title=WISEA J085510.74-071442.5 |access-date=15 May 2017}}</ref>


<ref name="Luhman2013">{{cite journal
<ref name="NASA20140425">{{cite news |url=http://www.nasa.gov/jpl/wise/spitzer-coldest-brown-dwarf-20140425/ |title=NASA's Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun |work=].gov |first1=Whitney |last1=Clavin |first2=J. D. |last2=Harrington |date=25 April 2014 |archive-url=https://web.archive.org/web/20140426004939/http://www.nasa.gov/jpl/wise/spitzer-coldest-brown-dwarf-20140425 |archive-date=26 April 2014 |url-status=live}}</ref>
|first1 = Kevin L. |last1 = Luhman
|title = A Search for a Distant Companion to the Sun with the Wide-field Infrared Survey Explorer
|journal = The Astrophysical Journal
|date = January 2014
|volume = 781
|issue = 1
|id = 4
|pages = 7
|doi-access = free
|doi = 10.1088/0004-637X/781/1/4
|bibcode = 2014ApJ...781....4L
|s2cid = 122930471}}</ref>


<ref name="NASA20140425">{{cite news |url=http://www.nasa.gov/jpl/wise/spitzer-coldest-brown-dwarf-20140425/ |title=NASA's Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun |work=].gov |first1=Whitney |last1=Clavin |first2=J. D. |last2=Harrington |date=25 April 2014 |archive-url=https://web.archive.org/web/20140426004939/http://www.nasa.gov/jpl/wise/spitzer-coldest-brown-dwarf-20140425 |archive-date=26 April 2014 |url-status=dead}}</ref>
<ref name="Luhman20140421">{{cite journal |title=Discovery of a ~250 K Brown Dwarf at 2 pc from the Sun |journal=] |first=Kevin L. |last=Luhman |volume=786 |issue=2 |page=L18 |date=21 April 2014 |doi=10.1088/2041-8205/786/2/L18 |arxiv=1404.6501 |bibcode=2014ApJ...786L..18L|s2cid=119102654 }}</ref>

<ref name="Luhman2014">{{cite journal
|first1 = Kevin L. |last1 = Luhman
|title = Discovery of a ~250 K Brown Dwarf at 2 pc from the Sun
|journal = The Astrophysical Journal Letters
|date = May 2014
|volume = 786
|issue = 2
|id = L18
|pages = 6
|doi-access = free
|doi = 10.1088/2041-8205/786/2/L18
|arxiv = 1404.6501
|bibcode = 2014ApJ...786L..18L
|s2cid = 119102654}}</ref>


<ref name="workinggroup">{{cite web |url=http://home.dtm.ciw.edu/users/boss/definition.html |title=Working Group on Extrasolar Planets: Definition of a "Planet" |publisher=Working Group on Extrasolar Planets of the International Astronomical Union |date=28 February 2003 |access-date=28 April 2014 |archive-date=16 December 2014 |archive-url=https://web.archive.org/web/20141216075559/http://home.dtm.ciw.edu/users/boss/definition.html |url-status=dead }}</ref> <ref name="workinggroup">{{cite web |url=http://home.dtm.ciw.edu/users/boss/definition.html |title=Working Group on Extrasolar Planets: Definition of a "Planet" |publisher=Working Group on Extrasolar Planets of the International Astronomical Union |date=28 February 2003 |access-date=28 April 2014 |archive-date=16 December 2014 |archive-url=https://web.archive.org/web/20141216075559/http://home.dtm.ciw.edu/users/boss/definition.html |url-status=dead }}</ref>
Line 132: Line 162:
<ref name="amspace20140428">{{cite news |url=http://www.americaspace.com/?p=59133 |title=Between the Planet and the Star: A New Ultra-Cold, Sub-Stellar Object Discovered Close to Sun |work=AmericaSpace.com |first=Leonidas |last=Papadopoulos |date=28 April 2014 |access-date=28 April 2014}}</ref> <ref name="amspace20140428">{{cite news |url=http://www.americaspace.com/?p=59133 |title=Between the Planet and the Star: A New Ultra-Cold, Sub-Stellar Object Discovered Close to Sun |work=AmericaSpace.com |first=Leonidas |last=Papadopoulos |date=28 April 2014 |access-date=28 April 2014}}</ref>


<ref name="Faherty2014">{{cite journal
<ref name="Faherty2014">{{cite journal |title=Indications of Water Clouds in the Coldest Known Brown Dwarf |journal=Astrophysical Journal Letters |first1=Jacqueline K. |last1=Faherty |first2=C. G. |last2=Tinney |first3=Andrew |last3=Skemer |first4=Andrew J. |last4=Monson |date=August 2014 |volume=793 |issue=1 |pages=L16 |arxiv=1408.4671 |bibcode=2014ApJ...793L..16F |doi=10.1088/2041-8205/793/1/L16|s2cid=119246100 }}</ref>
|first1 = Jacqueline K. |last1 = Faherty
|first2 = C. G. |last2 = Tinney
|first3 = Andrew |last3 = Skemer
|first4 = Andrew J. |last4 = Monson
|title = Indications of Water Clouds in the Coldest Known Brown Dwarf
|journal = The Astrophysical Journal Letters
|date = September 2016
|volume = 793
|issue = 1
|id = L16
|pages = 5
|doi-access = free
|doi = 10.1088/2041-8205/793/1/L16
|arxiv = 1408.4671
|bibcode = 2014ApJ...793L..16F
|s2cid = 119246100}}</ref>


<ref name="CNS5">{{cite journal |arxiv=2211.01449 |last1=Golovin |first1=Alex |last2=Reffert |first2=Sabine |last3=Just |first3=Andreas |last4=Jordan |first4=Stefan |last5=Vani |first5=Akash |last6=Jahreiß |first6=Hartmut |title=The Fifth Catalogue of Nearby Stars (CNS5) |date=November 2022 |journal=] |volume=670 |issue= |pages=A19 |doi=10.1051/0004-6361/202244250 |bibcode=2023A&A...670A..19G|s2cid=253264922 }} Catalogue can be accessed .</ref> <ref name="CNS5">{{cite journal |arxiv=2211.01449 |last1=Golovin |first1=Alex |last2=Reffert |first2=Sabine |last3=Just |first3=Andreas |last4=Jordan |first4=Stefan |last5=Vani |first5=Akash |last6=Jahreiß |first6=Hartmut |title=The Fifth Catalogue of Nearby Stars (CNS5) |date=November 2022 |journal=] |volume=670 |issue= |pages=A19 |doi=10.1051/0004-6361/202244250 |bibcode=2023A&A...670A..19G|s2cid=253264922 }} Catalogue can be accessed .</ref>
Line 138: Line 184:
<!-- <ref name="Luhman2016">{{cite journal |title=The Spectral Energy Distribution of the Coldest Known Brown Dwarf |journal=The Astronomical Journal |first1=Kevin L. |last1=Luhman |first2=Taran L. |last2=Esplin |volume=152 |issue=2 |at=78 |date=September 2016 |doi=10.3847/0004-6256/152/3/78 |bibcode=2016AJ....152...78L |arxiv=1605.06655|s2cid=118577918 }}</ref> --> <!-- <ref name="Luhman2016">{{cite journal |title=The Spectral Energy Distribution of the Coldest Known Brown Dwarf |journal=The Astronomical Journal |first1=Kevin L. |last1=Luhman |first2=Taran L. |last2=Esplin |volume=152 |issue=2 |at=78 |date=September 2016 |doi=10.3847/0004-6256/152/3/78 |bibcode=2016AJ....152...78L |arxiv=1605.06655|s2cid=118577918 }}</ref> -->


<ref name="Schneider2016">{{cite journal
<ref name="Kirkpatrick et al. 2021">{{Cite journal |last1=Kirkpatrick|first1=J. Davy|last2=Gelino|first2=Christopher R.|last3=Faherty|first3=Jacqueline K. |author3-link=Jackie Faherty |last4=Meisner|first4=Aaron M.|last5=Caselden|first5=Dan|last6=Schneider|first6=Adam C.|last7=Marocco|first7=Federico|last8=Cayago|first8=Alfred J.|last9=Smart|first9=R. L.|last10=Eisenhardt|first10=Peter R.|last11=Kuchner|first11=Marc J.|last12=Wright|first12=Edward L.|last13=Cushing|first13=Michael C.|last14=Allers|first14=Katelyn N.|last15=Bardalez Gagliuffi|first15=Daniella C.|last16=Burgasser|first16=Adam J.|last17=Gagne|first17=Jonathan|last18=Logsdon|first18=Sarah E.|last19=Martin|first19=Emily C.|last20=Ingalls|first20=James G.|last21=Lowrance|first21=Patrick J.|last22=Abrahams|first22=Ellianna S.|last23=Aganze|first23=Christian|last24=Gerasimov|first24=Roman|last25=Gonzales|first25=Eileen C.|last26=Hsu|first26=Chih-Chun|last27=Kamraj|first27=Nikita|last28=Kiman|first28=Rocio|last29=Rees|first29=Jon|last30=Theissen|first30=Christopher |display-authors=2 |title=The Field Substellar Mass Function Based on the Full-sky 20 pc Census of 525 L, T, and Y Dwarfs |journal=The Astrophysical Journal Supplement Series |year=2021 |volume=253 |issue=1 |page=7 |doi=10.3847/1538-4365/abd107 |arxiv=2011.11616 |bibcode=2021ApJS..253....7K |s2cid=227126954 |doi-access=free }}</ref>
|first1 = Adam C. |last1 = Schneider
|first2 = Michael C. |last2 = Cushing
|first3 = J. Davy |last3 = Kirkpatrick
|first4 = Christopher R. |last4 = Gelino
|title = The Collapse of the Wien Tail in the Coldest Brown Dwarf? Hubble Space Telescope Near-infrared Photometry of WISE J085510.83-071442.5
|journal = The Astrophysical Journal Letters
|date = June 2016
|volume = 823
|issue = 2
|id = L35
|pages = 6
|doi-access = free
|doi = 10.3847/2041-8205/823/2/L35
|arxiv = 1605.05618
|bibcode = 2016ApJ...823L..35S
|s2cid = 13222844}}</ref>

<ref name="Osorio2016">{{cite journal
|display-authors = etal
|first1 = M. R. |last1 = Zapatero Osorio
|first2 = N. |last2 = Lodieu
|first3 = V. J. S. |last3 = Béjar
|first4 = E. L. |last4 = Martin
|first5 = V. D. |last5 = Ivanov
|first6 = A. |last6 = Bayo
|title = Near-infrared photometry of WISE J085510.74-071442.5
|journal = Astronomy & Astrophysics
|date = August 2016
|volume = 592
|id = A80
|pages = 9
|doi-access = free
|doi = 10.1051/0004-6361/201628662
|arxiv = 1605.08620
|bibcode = 2016A&A...592A..80Z
|s2cid = 118659230}}</ref>

<ref name="Skemer2016">{{cite journal
|display-authors = etal
|first1 = Andrew J. |last1 = Skemer
|first2 = Caroline V. |last2 = Morley
|first3 = Katelyn N. |last3 = Allers
|first4 = Thomas R. |last4 = Geballe
|first5 = Mark S. |last5 = Marley
|first6 = Jonathan J. |last6 = Fortney
|title = The First Spectrum of the Coldest Brown Dwarf
|journal = The Astrophysical Journal
|date = August 2016
|volume = 826
|issue = 2
|id = L17
|pages = 5
|doi-access = free
|doi = 10.3847/2041-8205/826/2/L17
|arxiv = 1605.04902
|bibcode = 2016ApJ...826L..17S
|s2cid = 59393726}}</ref>

<ref name="Esplin2016">{{cite journal
|display-authors = etal
|first1 = T. L. |last1 = Esplin
|first2 = K. L. |last2 = Luhman
|first3 = M. C. |last3 = Cushing
|first4 = K. K. |last4 = Hardegree-Ullman
|first5 = J. L. |last5 = Trucks
|first6 = A. J. |last6 = Burgasser
|title = Photometric Monitoring of the Coldest Known Brown Dwarf with the Spitzer Space Telescope
|journal = The Astrophysical Journal
|date = November 2016
|volume = 832
|issue = 1
|id = 58
|pages = 5
|doi-access = free
|doi = 10.3847/0004-637X/832/1/58
|arxiv = 1609.05850
|bibcode = 2016ApJ...832...58E
|s2cid = 118611233}}</ref>

<ref name="Morley2018">{{cite journal
|display-authors = etal
|first1 = Caroline V. |last1 = Morley
|first2 = Andrew J. |last2 = Skemer
|first3 = Katelyn N. |last3 = Allers
|first4 = Mark. S. |last4 = Marley
|first5 = Jacqueline K. |last5 = Faherty
|first6 = Channon |last6 = Visscher
|title = An L Band Spectrum of the Coldest Brown Dwarf
|journal = The Astrophysical Journal
|date = May 2018
|volume = 858
|issue = 2
|id = 97
|pages = 17
|doi-access = free
|doi = 10.3847/1538-4357/aabe8b
|arxiv = 1804.07771
|bibcode = 2018ApJ...858...97M
|s2cid = 118954481}}</ref>

<ref name="Kirkpatrick2021">{{cite journal
|display-authors = etal
|first1 = J. Davy |last1 = Kirkpatrick
|first2 = Christopher R. |last2 = Gelino
|first3 = Jacqueline K. |last3 = Faherty
|first4 = Aaron M. |last4 = Meisner
|first5 = Dan |last5 = Caselden
|first6 = Adam C. |last6 = Schneider
|title = The Field Substellar Mass Function Based on the Full-sky 20 pc Census of 525 L, T, and Y Dwarfs
|journal = The Astrophysical Journal Supplement Series
|date = March 2021
|volume = 253
|issue = 1
|id = 7
|pages = 85
|doi-access = free
|doi = 10.3847/1538-4365/abd107
|arxiv = 2011.11616
|bibcode = 2021ApJS..253....7K
|s2cid = 227126954}}</ref>

<ref name="Luhman2024">{{cite journal
|display-authors = etal
|first1 = K. L. |last1 = Luhman
|first2 = P. |last2 = Tremblin
|first3 = C. |last3 = Alves de Oliveira
|first4 = S. M. |last4 = Birkmann
|first5 = I. |last5 = Baraffe
|first6 = G. |last6 = Chabrier
|title = JWST/NIRSpec Observations of the Coldest Known Brown Dwarf
|journal = The Astronomical Journal
|date = January 2024
|volume = 167
|issue = 1
|pages = 5
|doi-access = free
|doi = 10.3847/1538-3881/ad0b72
|arxiv = 2311.17316
|bibcode = 2024AJ....167....5L
|s2cid = 265498620}}</ref>


<ref name="Rowland2024">{{Cite arXiv |eprint=2411.14541 |class=astro-ph |last1=Rowland |first1=Melanie J. |title=Protosolar D-to-H abundance and one part-per-billion PH<sub>3</sub> in the coldest brown dwarf |date=2024-11-21 |last2=Morley |first2=Caroline V. |last3=Miles |first3=Brittany E. |last4=Suárez |first4=Genaro |last5=Faherty |first5=Jacqueline K. |last6=Skemer |first6=Andrew J. |last7=Beiler |first7=Samuel A. |last8=Line |first8=Michael R. |last9=Bjoraker |first9=Gordon L.}}</ref>
<ref name="Luhman2024">{{cite journal |last1=Luhman |first1=K. L. |last2=Tremblin |first2=P. |last3=Alves de Oliveira |first3=C. |last4=Birkmann |first4=S. M. |last5=Baraffe |first5=I. |last6=Chabrier |first6=G. |last7=Manjavacas |first7=E. |last8=Parker |first8=R. J. |last9=Valenti |first9=J. |display-authors=2 |date=January 2024 |title=JWST/NIRSpec Observations of the Coldest Known Brown Dwarf |journal=] |volume=167 |issue=1 |pages=5 |doi=10.3847/1538-3881/ad0b72 |doi-access=free |arxiv=2311.17316 |bibcode=2024AJ....167....5L |issn=0004-6256}}</ref>


}} }}


==Further reading== == Further reading ==
*{{cite journal |first1=C. |last1=Beichman |first2=Christopher R. |last2=Gelino |first3=J. Davy |last3=Kirkpatrick |first4=Michael C. |last4=Cushing |first5=Sally |last5=Dodson-Robinson |first6=Mark S. |last6=Marley |first7=Caroline V. |last7=Morley |first8=E. L. |last8=Wright |display-authors=2 |title=WISE Y Dwarfs As Probes of the Brown Dwarf-Exoplanet Connection |journal=] |volume=783 |issue=2 |page=68 |date=2014 |bibcode=2014ApJ...783...68B |doi=10.1088/0004-637X/783/2/68 |arxiv=1401.1194|s2cid=119302072 }} ('''Note''': WISE 0855−0714 is not mentioned in this paper; it is about other Y-type objects discovered by WISE.) *{{cite journal |first1=C. |last1=Beichman |first2=Christopher R. |last2=Gelino |first3=J. Davy |last3=Kirkpatrick |first4=Michael C. |last4=Cushing |first5=Sally |last5=Dodson-Robinson |first6=Mark S. |last6=Marley |first7=Caroline V. |last7=Morley |first8=E. L. |last8=Wright |display-authors=2 |title=WISE Y Dwarfs As Probes of the Brown Dwarf-Exoplanet Connection |journal=] |volume=783 |issue=2 |page=68 |date=2014 |bibcode=2014ApJ...783...68B |doi=10.1088/0004-637X/783/2/68 |arxiv=1401.1194|s2cid=119302072 }} ('''Note''': WISE 0855−0714 is not mentioned in this paper; it is about other Y-type objects discovered by WISE.)
*{{cite journal |first1=Kevin L. |last1=Luhman |first2=Taran L. |last2=Esplin |title=A New Parallax Measurement for the Coldest Known Brown Dwarf |date=2014 |journal=] |volume=796 |issue=1 |pages=6 |arxiv=1409.5899 |doi=10.1088/0004-637X/796/1/6 |bibcode=2014ApJ...796....6L|s2cid=119179360 }} *{{cite journal |first1=Kevin L. |last1=Luhman |first2=Taran L. |last2=Esplin |title=A New Parallax Measurement for the Coldest Known Brown Dwarf |date=2014 |journal=] |volume=796 |issue=1 |pages=6 |arxiv=1409.5899 |doi=10.1088/0004-637X/796/1/6 |bibcode=2014ApJ...796....6L|s2cid=119179360 }}
Line 150: Line 336:
*{{cite journal |last1=Tinney |first1=C. G. |last2=Faherty |first2=Jacqueline K. |last3=Kirkpatrick |first3=J. Davy |last4=Cushing |first4=Mike |last5=Morley |first5=Caroline V. |last6=Wright |first6=Edward L. |display-authors=2 |date=November 2014 |title=The Luminosities of the Coldest Brown Dwarfs |journal=] |volume=796 |issue=1 |pages=39 |doi=10.1088/0004-637X/796/1/39 |arxiv=1410.0746 |bibcode=2014ApJ...796...39T}} *{{cite journal |last1=Tinney |first1=C. G. |last2=Faherty |first2=Jacqueline K. |last3=Kirkpatrick |first3=J. Davy |last4=Cushing |first4=Mike |last5=Morley |first5=Caroline V. |last6=Wright |first6=Edward L. |display-authors=2 |date=November 2014 |title=The Luminosities of the Coldest Brown Dwarfs |journal=] |volume=796 |issue=1 |pages=39 |doi=10.1088/0004-637X/796/1/39 |arxiv=1410.0746 |bibcode=2014ApJ...796...39T}}


==External links== == External links ==
*, a tool created by volunteers of the ] ] project
* at Solstation.com


{{nearest systems|1}} {{nearest systems|1}}

Latest revision as of 06:19, 9 December 2024

Sub-brown dwarf in the constellation Hydra

WISE J085510.83−071442.5

Time-lapsed photo sequence of WISE 0855−0714's movement in the sky using captured images from the JWST
Observation data
Epoch J2000      Equinox J2000
Constellation Hydra
Right ascension 08 55 10.83168
Declination −07° 14′ 42.5256″
Characteristics
Evolutionary stage Sub-brown dwarf
Spectral type Y4V
Apparent magnitude (J) 25.00±0.53
Apparent magnitude (H) 23.83±0.24
Astrometry
Proper motion (μ) RA: −8,123.7±1.3 mas/yr
Dec.: 673.2±1.3 mas/yr
Parallax (π)439.0 ± 2.4 mas
Distance7.43 ± 0.04 ly
(2.28 ± 0.01 pc)
Details
Mass~3–10 MJup
Radius0.89 RJup
Radius63,500 km
Luminosity4.9545×10 L
Surface gravity (log g)~4 cgs
Temperature285 K
Metallicity ~0 dex
Age1–10 Gyr
Other designations
WISEA J085510.74-071442.5, GJ 11286
Database references
SIMBADdata
WISE 0855−0714 is located in the constellation Hydra.WISE 0855−0714 is located in the constellation Hydra.WISE 0855−0714Location of WISE 0855−0714 in the constellation Hydra

WISE 0855−0714 (full designation WISE J085510.83−071442.5, or W0855 for short) is a sub-brown dwarf of spectral class Y4, located 7.4 light-years (2.3 parsecs) from the Sun in the constellation Hydra. It is the fourth-closest star or (sub-) brown dwarf system to the Sun and was discovered by Kevin Luhman in 2013 using data from the Wide-field Infrared Survey Explorer (WISE). It is the coldest brown dwarf found in interstellar space, having a temperature of about 285 K (12 °C; 53 °F). It has an estimated mass between 3–10 Jupiter masses, which makes it a planetary-mass object below the 13 Jupiter mass limit for deuterium fusion.

Characterization

Observations

WISE 0855−0714 was first imaged by the WISE telescope on 4 May 2010 during its primary mission of surveying the entire sky. It was later discovered by Kevin Luhman in March 2013, who noticed the object's unusually high proper motion while searching for potential binary companions of the Sun in WISE images. In the interest of confirming the object's spectral properties and nearby distance to the Sun, Luhman made follow-up observations with the Spitzer Space Telescope and the Gemini North telescope in 2013–2014. The discovery of the object was announced in a NASA press release in April 2014.

Since WISE 0855−0714 is an isolated object, its luminosity primarily comes from thermal radiation. WISE 0855−0714's temperature is low enough that it roughly matches room temperature, which means WISE 0855−0714's luminosity is very low and primarily emits infrared light as thermal radiation. Hence, it is best observed with infrared telescopes such as WISE and the James Webb Space Telescope (JWST). WISE 0855−0714 has been detected in spectral wavelengths as short as 1.15 μm—in this near-infrared wavelength, the object appears extremely dim with an apparent magnitude of 26.3. WISE 0855−0714's brightness decreases with decreasing wavelength, so the object is practically invisible in visible light.

Distance and proper motion

Based on direct observations, WISE 0855−0714 has a large parallax of 439.0±2.4 mas, which corresponds to a distance of around 2.28±0.01 parsecs (7.43±0.04 light-years). This makes WISE 0855−0714 the fourth-closest star or (sub-) brown dwarf system to the Sun. WISE 0855−0714 also has an exceptionally high proper motion of 8,151.6±1.8 mas/yr, the third-highest after Barnard's Star (10,300 mas/yr) and Kapteyn's Star (8,600 mas/yr)

Spectrometry

Its luminosity in different bands of the thermal infrared in combination with its absolute magnitude—because of its known distance—was used to place it in context of different models; the best characterization of its brightness was in the W2 band of 4.6 μm at an apparent magnitude of 13.89±0.05, though it was brighter into the deeper infrared. Infrared images taken with the Magellan Baade Telescope suggest evidence of sulfide clouds below water ice clouds.

Near- and mid-infrared spectra in the L- and M-band were taken with the GNIRS instrument on the Gemini North Telescope. The M-band (4.5–5.1 μm) spectrum is dominated by water vapour (H2O) absorption. The L-band (3.4–4.14 μm) spectrum is dominated by methane absorption. Both the M- and L-band surprisingly have no detection of phosphine (PH3), which appears in the atmosphere of Jupiter. The M-band spectrum shows evidence for water ice clouds and the near-infrared photometry WISE 0855 is faint compared to models, suggesting an additional absorber, probably clouds made of ammonium dihydrogen phosphate (NH4)(H2PO4), which are below the water ice clouds. An approved JWST proposal describes how the team is planning to use a near-infrared time-series to study the hydrological cycle in the atmosphere of WISE 0855 with NIRSpec.

Observations with NIRSpec detected methane (CH4), water vapor (H2O), ammonia (NH3) and carbon monoxide (CO) in the atmosphere, but was not able to confirm any phosphine (PH3) or carbon dioxide (CO2) in the atmosphere. Water ice clouds are also not confirmed and the spectrum is well matched with a cloudless model. Observations with MIRI showed a water vapor depletion and a water abundance that is variable with pressure. This is consistent with water condensing out in the upper atmosphere. The observations did however not detect any water ice clouds, which were predicted in previous studies. This discrepancy is explained with the rainout of the water: Water condenses into particles in the upper atmosphere, which quickly sink into the lower atmosphere. Clouds only form if upward mixing is present. A similar process is present for alkali metals in L- and T-dwarfs. A direct rainout would suggest weak mixing, but disequilibrium chemistry suggest rigours mixing. Future variable studies might resolve if upward mixing or settling is the dominant process. Cloud models however potentially detected deep ammonium dihydrogen phosphate (NH4)(H2PO4) clouds. The observations also detected NH3 for the first time in WISE 0855. The atmosphere has a mass fraction of NH3/NH3 = 332+63
−43, meaning it has about 99.7% N and about 0.3% N. Compared to solar values and the ratio of WISE 1828, the atmosphere of WISE 0855 is enriched in N. The nitrogen isotope ratio is closer to today's N-enriched interstellar medium. This could mean that WISE 0855 formed from a younger cloud, but more measurements of N in other brown dwarfs are needed to establish evolutionary trends. In November 2024 a team used archived and new NIRSpec data to detect deuterated methane (CH3D) and about one part per billion PH3 in WISE 0855. This detection of deuterium showed that WISE 0855 has a mass below the deuterium-burning-limit. The low amount of PH3 is on the other hand in disagreement with predictions, showing incomplete knowledge of phosphorus chemistry.

Variability

Variability of WISE 0855 in the infrared was measured with Spitzer IRAC. A relative small amplitude of 4–5% was measured. Water ice cloud models predicted a large amplitude. This small amplitude might suggest that the hemispheres of WISE 0855 have very small deviation in cloud coverage. The light curve is too irregular to produce a good fit and rotation periods between 9.7 and 14 hours were measured.

Physical parameters

The mass and age of WISE 0855−0714 are neither known with certainty, but can be constrained with its known present-day temperature. The age of WISE 0855−0714 depends on its mass; a lower mass would lead to a faster rate of cooling and thus a younger age for WISE 0855−0714, whereas a higher mass would lead to a slower rate of cooling and thus an older age for WISE 0855−0714. Assuming an age range of 1–10 billion years, evolutionary models for brown dwarfs predict that WISE 0855−0714 should have a mass between 3 to 10 MJup. This mass is in the range of a sub-brown dwarf or planetary-mass object.

As of 2003, the International Astronomical Union considers an object with a mass above 13 MJup, capable of fusing deuterium, to be a brown dwarf. A lighter object and one orbiting another object is considered a planet. However, if the distinction is based on how the object formed then it might be considered a failed star, a theory advanced for the object Cha 110913-773444.

Combining its luminosity, distance, and mass it is estimated to be the coldest-known brown dwarf, with a modeled effective temperature of 225 to 260 K (−48 to −13 °C; −55 to 8 °F), depending on the model. Models matching the NIRSpec spectrum are well fitted with a temperature of 285 K (12 °C; 53 °F).

Gallery

  • Time-lapsed photo sequence of WISE 0855−0714's movement in the sky using captured images from the WISE and the Spitzer telescopes. Time-lapsed photo sequence of WISE 0855−0714's movement in the sky using captured images from the WISE and the Spitzer telescopes.
  • JWST NIRCam observation of W0855 (orange "star" at the center) showing the movement over about half a year. JWST NIRCam observation of W0855 (orange "star" at the center) showing the movement over about half a year.
  • The position of WISE 0855−0714 on a radar map among all stellar objects or stellar systems within 9 light years (ly) from the map's center, the Sun (Sol). The diamond-shapes are their positions entered according to right ascension in hours angle (indicated at the edge of the map's reference disc), and according to their declination. The second mark shows each's distance from Sol, with the concentric circles indicating the distance in steps of one ly. The position of WISE 0855−0714 on a radar map among all stellar objects or stellar systems within 9 light years (ly) from the map's center, the Sun (Sol). The diamond-shapes are their positions entered according to right ascension in hours angle (indicated at the edge of the map's reference disc), and according to their declination. The second mark shows each's distance from Sol, with the concentric circles indicating the distance in steps of one ly.
  • No water ice clouds are detected in WISE 0855, but maybe deep ammonium dihydrogen phosphate clouds exist. This would make it similar to class III (cloudless) planets on the Sudarsky scale No water ice clouds are detected in WISE 0855, but maybe deep ammonium dihydrogen phosphate clouds exist. This would make it similar to class III (cloudless) planets on the Sudarsky scale

See also

Notes

  1. Applying the Stefan–Boltzmann law with a nominal solar effective temperature of 5,772 K:
    ( 5 , 772 285 ) 4 10 7.305 = 0.091298   R {\displaystyle {\sqrt {{\biggl (}{\frac {5,772}{285}}{\biggr )}^{4}\cdot 10^{-7.305}}}=0.091298\ R_{\odot }} . Using the solar radius value of 695,700 km, the calculated radius of WISE 0855-0714 converts to approximately 63,500 km, or 0.89 RJ when dividing by the nominal Jupiter radius value of 71,492 km.
  2. Derived from a bolometric luminosity logarithm of –7.305 given in Luhman et al. 2024

References

  1. ^ "WISEA J085510.74-071442.5". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 15 May 2017.
  2. ^ Kirkpatrick, J. Davy; Gelino, Christopher R.; Faherty, Jacqueline K.; Meisner, Aaron M.; Caselden, Dan; Schneider, Adam C.; et al. (March 2021). "The Field Substellar Mass Function Based on the Full-sky 20 pc Census of 525 L, T, and Y Dwarfs". The Astrophysical Journal Supplement Series. 253 (1): 85. arXiv:2011.11616. Bibcode:2021ApJS..253....7K. doi:10.3847/1538-4365/abd107. S2CID 227126954. 7.
  3. Mamajek, Eric. "A Modern Mean Dwarf Stellar Color and Effective Temperature Sequence". Retrieved 7 February 2021.
  4. ^ Luhman, K. L.; Tremblin, P.; Alves de Oliveira, C.; Birkmann, S. M.; Baraffe, I.; Chabrier, G.; et al. (January 2024). "JWST/NIRSpec Observations of the Coldest Known Brown Dwarf". The Astronomical Journal. 167 (1): 5. arXiv:2311.17316. Bibcode:2024AJ....167....5L. doi:10.3847/1538-3881/ad0b72. S2CID 265498620.
  5. Golovin, Alex; Reffert, Sabine; Just, Andreas; Jordan, Stefan; Vani, Akash; Jahreiß, Hartmut (November 2022). "The Fifth Catalogue of Nearby Stars (CNS5)". Astronomy & Astrophysics. 670: A19. arXiv:2211.01449. Bibcode:2023A&A...670A..19G. doi:10.1051/0004-6361/202244250. S2CID 253264922. Catalogue can be accessed here.
  6. ^ Luhman, Kevin L. (May 2014). "Discovery of a ~250 K Brown Dwarf at 2 pc from the Sun". The Astrophysical Journal Letters. 786 (2): 6. arXiv:1404.6501. Bibcode:2014ApJ...786L..18L. doi:10.1088/2041-8205/786/2/L18. S2CID 119102654. L18.
  7. Luhman, Kevin L. (January 2014). "A Search for a Distant Companion to the Sun with the Wide-field Infrared Survey Explorer". The Astrophysical Journal. 781 (1): 7. Bibcode:2014ApJ...781....4L. doi:10.1088/0004-637X/781/1/4. S2CID 122930471. 4.
  8. ^ Clavin, Whitney; Harrington, J. D. (25 April 2014). "NASA's Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun". NASA.gov. Archived from the original on 26 April 2014.
  9. Schneider, Adam C.; Cushing, Michael C.; Kirkpatrick, J. Davy; Gelino, Christopher R. (June 2016). "The Collapse of the Wien Tail in the Coldest Brown Dwarf? Hubble Space Telescope Near-infrared Photometry of WISE J085510.83-071442.5". The Astrophysical Journal Letters. 823 (2): 6. arXiv:1605.05618. Bibcode:2016ApJ...823L..35S. doi:10.3847/2041-8205/823/2/L35. S2CID 13222844. L35.
  10. Zapatero Osorio, M. R.; Lodieu, N.; Béjar, V. J. S.; Martin, E. L.; Ivanov, V. D.; Bayo, A.; et al. (August 2016). "Near-infrared photometry of WISE J085510.74-071442.5". Astronomy & Astrophysics. 592: 9. arXiv:1605.08620. Bibcode:2016A&A...592A..80Z. doi:10.1051/0004-6361/201628662. S2CID 118659230. A80.
  11. Faherty, Jacqueline K.; Tinney, C. G.; Skemer, Andrew; Monson, Andrew J. (September 2016). "Indications of Water Clouds in the Coldest Known Brown Dwarf". The Astrophysical Journal Letters. 793 (1): 5. arXiv:1408.4671. Bibcode:2014ApJ...793L..16F. doi:10.1088/2041-8205/793/1/L16. S2CID 119246100. L16.
  12. Skemer, Andrew J.; Morley, Caroline V.; Allers, Katelyn N.; Geballe, Thomas R.; Marley, Mark S.; Fortney, Jonathan J.; et al. (August 2016). "The First Spectrum of the Coldest Brown Dwarf". The Astrophysical Journal. 826 (2): 5. arXiv:1605.04902. Bibcode:2016ApJ...826L..17S. doi:10.3847/2041-8205/826/2/L17. S2CID 59393726. L17.
  13. Morley, Caroline V.; Skemer, Andrew J.; Allers, Katelyn N.; Marley, Mark. S.; Faherty, Jacqueline K.; Visscher, Channon; et al. (May 2018). "An L Band Spectrum of the Coldest Brown Dwarf". The Astrophysical Journal. 858 (2): 17. arXiv:1804.07771. Bibcode:2018ApJ...858...97M. doi:10.3847/1538-4357/aabe8b. S2CID 118954481. 97.
  14. Skemer, Andrew; Miles, Brittany E.; Morley, Caroline; Allers, Katelyn; Bjoraker, Gordon; Carter, Aarynn; Cushing, Michael C.; Faherty, Jacqueline Kelly; Fortney, Jonathan; Freedman, Richard; Geballe, Thomas R.; Line, Michael; Lupu, Roxana; Marley, Mark S.; Martin, Emily (1 March 2021). "Water Ice Clouds and Weather on the Coldest Brown Dwarf". JWST Proposal. Cycle 1: 2327. Bibcode:2021jwst.prop.2327S.
  15. Kühnle, H.; Patapis, P.; Mollière, P.; Tremblin, P.; Matthews, E.; Glauser, A. M.; Whiteford, N.; Vasist, M.; Absil, O. (14 October 2024). "Water depletion and 15NH3 in the atmosphere of the coldest brown dwarf observed with JWST/MIRI". arXiv:2410.10933 .
  16. Rowland, Melanie J.; Morley, Caroline V.; Miles, Brittany E.; Suárez, Genaro; Faherty, Jacqueline K.; Skemer, Andrew J.; Beiler, Samuel A.; Line, Michael R.; Bjoraker, Gordon L. (21 November 2024). "Protosolar D-to-H abundance and one part-per-billion PH3 in the coldest brown dwarf". arXiv:2411.14541 .
  17. Esplin, T. L.; Luhman, K. L.; Cushing, M. C.; Hardegree-Ullman, K. K.; Trucks, J. L.; Burgasser, A. J.; et al. (November 2016). "Photometric Monitoring of the Coldest Known Brown Dwarf with the Spitzer Space Telescope". The Astrophysical Journal. 832 (1): 5. arXiv:1609.05850. Bibcode:2016ApJ...832...58E. doi:10.3847/0004-637X/832/1/58. S2CID 118611233. 58.
  18. "Working Group on Extrasolar Planets: Definition of a "Planet"". Working Group on Extrasolar Planets of the International Astronomical Union. 28 February 2003. Archived from the original on 16 December 2014. Retrieved 28 April 2014.
  19. Papadopoulos, Leonidas (28 April 2014). "Between the Planet and the Star: A New Ultra-Cold, Sub-Stellar Object Discovered Close to Sun". AmericaSpace.com. Retrieved 28 April 2014.

Further reading

External links

    Celestial objects within 10 light-years
Primary member type
Celestial objects by systems.
Main-sequence
stars
A-type
G-type
M-type
(red dwarfs)
Brown dwarfs
L-type
  • Luhman 16 (6.5029±0.0011 ly)
  • T-type brown dwarf B
Sub-brown dwarfs
and rogue planets
Y-type
Constellation of Hydra
Stars
Bayer
Flamsteed
Variable
HR
HD
Gliese
Other
Star clusters
Open
Globular
Nebulae
Planetary
Galaxies
Messier
NGC
Other
Galaxy clusters
Abell
Other
Astronomical events
Portals: Categories: