Misplaced Pages

Twistor theory: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editContent deleted Content addedVisualWikitext
Revision as of 11:37, 16 May 2006 edit82.142.132.74 (talk)No edit summary← Previous edit Latest revision as of 06:14, 28 August 2024 edit undoVioletEscalator (talk | contribs)Extended confirmed users3,816 edits Clean up/copyeditTag: Visual edit 
(335 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{Short description|Possible path to quantum gravity proposed by Roger Penrose}}
The '''twistor theory''', originally developed by ] in ], is the mathematical theory which maps the geometric objects of the four dimensional space-time (]) into the geometric objects in the 4-dimensional complex space with the metric signature (2,2).
In ], '''twistor theory''' was proposed by ] in 1967<ref name ="Pen1">{{cite journal|last1=Penrose|first1=R.|date=1967|title=Twistor Algebra|journal=]|volume=8|issue=2|pages=345–366|bibcode=1967JMP.....8..345P|doi=10.1063/1.1705200}}</ref> as a possible path<ref name ="PenMac">{{Cite journal|last1=Penrose|first1=R.|last2=MacCallum|first2=M.A.H.|title=Twistor theory: An approach to the quantisation of fields and space-time|journal=Physics Reports|volume=6|issue=4|pages=241–315|doi=10.1016/0370-1573(73)90008-2|year=1973|bibcode=1973PhR.....6..241P}}</ref> to ] and has evolved into a widely studied branch of ] and ]. Penrose's idea was that ] should be the basic arena for physics from which ] itself should emerge. It has led to powerful mathematical tools that have applications to ] and ], ]s and ], and in physics to ], ], and the theory of ]s.


Twistor theory arose in the context of the rapidly expanding mathematical developments in Einstein's theory of ] in the late 1950s and in the 1960s and carries a number of influences from that period. In particular, ] has credited ] as an important early influence in the development of twistor theory, through his construction of so-called ''Robinson congruences''.<ref>{{cite book |first=Roger |last=Penrose |chapter=On the Origins of Twistor Theory |title=Gravitation and Geometry, a Volume in Honour of Ivor Robinson |editor-first=Wolfgang |editor-last=Rindler |editor2-first=Andrzej |editor2-last=Trautman |publisher=Bibliopolis |year=1987 |isbn=88-7088-142-3 }}</ref>
The coordinates in such a space are called twistors.


==Overview==
For some time there was hope that the twistor theory may be the right approach towards solving ], but this is now considered unlikely.
] ] <math>\mathbb{PT}</math> is ] <math>\mathbb{CP}^3</math>, the simplest ] ]. It has a physical interpretation as the space of ]s with ]. It is the ] of a 4-dimensional ], non-projective twistor space <math>\mathbb{T}</math>, with a ] of ] (2,&nbsp;2) and a ] ]. This can be most naturally understood as the space of ] (]) ]s for the ] <math>SO(4,2)/\mathbb{Z}_2</math> of ]; it is the ] of the ] <math>SU(2,2)</math> of the conformal group. This definition can be extended to arbitrary dimensions except that beyond dimension four, one defines projective twistor space to be the space of projective ]s<ref name="HS1">{{cite journal | last1=Harnad | first1=J. | last2=Shnider | first2=S. | title=Isotropic geometry and twistors in higher dimensions. I. The generalized Klein correspondence and spinor flags in even dimensions | journal=Journal of Mathematical Physics | volume=33 | issue=9 | year=1992 | doi=10.1063/1.529538 | pages=3197–3208 | bibcode=1992JMP....33.3197H }}</ref><ref name="HS2">{{cite journal | last1=Harnad | first1=J. | last2=Shnider | first2=S. | title=Isotropic geometry and twistors in higher dimensions. II. Odd dimensions, reality conditions, and twistor superspaces | journal=Journal of Mathematical Physics | volume=36 | issue=9 | year=1995 | doi=10.1063/1.531096 | pages=1945–1970 | doi-access=free | bibcode=1995JMP....36.1945H }} </ref> for the conformal group.<ref name="PenRin">{{Cite book |title=Spinors and Space-Time |last1=Penrose |first1=Roger |last2=Rindler |first2=Wolfgang |publisher=Cambridge University Press |year=1986 |isbn=9780521252676 |pages=Appendix |language=en |doi=10.1017/cbo9780511524486}}</ref><ref>{{Cite journal |last1=Hughston |first1=L. P. |last2=Mason |first2=L. J. |date=1988 |title=A generalised Kerr-Robinson theorem |journal=Classical and Quantum Gravity |language=en |volume=5 |issue=2 |pages=275 |doi=10.1088/0264-9381/5/2/007 |issn=0264-9381 |bibcode=1988CQGra...5..275H |s2cid=250783071 }}</ref>


In its original form, twistor theory encodes ]s on Minkowski space in terms of ] objects on twistor space via the ]. This is especially natural for ] of arbitrary ]. In the first instance these are obtained via ] formulae in terms of free holomorphic functions on regions in twistor space. The holomorphic twistor functions that give rise to solutions to the massless field equations can be more deeply understood as ] representatives of analytic ] on regions in <math>\mathbb{PT}</math>. These correspondences have been extended to certain nonlinear fields, including ] gravity in Penrose's ] ] construction<ref name="Penrose1976">{{cite journal | last1 = Penrose | first1 = R. | year = 1976 | title = Non-linear gravitons and curved twistor theory | url = | journal = Gen. Rel. Grav. | volume = 7 | issue = 1 | pages = 31–52 | doi = 10.1007/BF00762011 | bibcode = 1976GReGr...7...31P | s2cid = 123258136 }}</ref> and self-dual ]s in the so-called Ward construction;<ref>{{Cite journal |last=Ward |first=R. S. |author-link=Richard S. Ward |title=On self-dual gauge fields |journal=Physics Letters A |volume=61 |issue=2 |pages=81–82 |doi=10.1016/0375-9601(77)90842-8 |year=1977 |bibcode=1977PhLA...61...81W}}</ref> the former gives rise to ] of the underlying complex structure of regions in <math>\mathbb{PT}</math>, and the latter to certain holomorphic vector bundles over regions in <math>\mathbb{PT}</math>. These constructions have had wide applications, including inter alia the theory of ]s.<ref>{{Cite book |title=Twistor geometry and field theory |last=Ward |first=R. S. |date=1990 |publisher=Cambridge University Press |others=Wells, R. O. |isbn=978-0521422680 |location=Cambridge |oclc=17260289}}</ref><ref>{{Cite book |title=Integrability, self-duality, and twistor theory |last1=Mason |first1=Lionel J. |last2=Woodhouse |first2=Nicholas M. J. |date=1996 |publisher=Clarendon Press |isbn=9780198534983 |location=Oxford |oclc=34545252}}</ref><ref>{{Cite book |title=Solitons, instantons, and twistors |last=Dunajski |first=Maciej |date=2010 |publisher=Oxford University Press |isbn=9780198570622 |location=Oxford |oclc=507435856}}</ref>
The twistor approach appears to be especially natural for solving the equations of motion of ] of arbitrary ].


The self-duality condition is a major limitation for incorporating the full nonlinearities of physical theories, although it does suffice for ] ] and ]s (see ]).<ref>{{Cite journal |last1=Atiyah |first1=M. F. |last2=Hitchin |first2=N. J. |last3=Drinfeld |first3=V. G. |last4=Manin |first4=Yu. I. |title=Construction of instantons |journal=Physics Letters A |volume=65 |issue=3 |pages=185–187 |doi=10.1016/0375-9601(78)90141-x |year=1978 |bibcode=1978PhLA...65..185A}}</ref> An early attempt to overcome this restriction was the introduction of '''ambitwistors''' by Isenberg, Yasskin and Green,<ref name="IYG">{{Cite journal| last1=Isenberg |first1=James |last2=Yasskin |first2=Philip B. |last3=Green |first3=Paul S. |title=Non-self-dual gauge fields |journal=Physics Letters B |volume=78 |issue=4 |pages=462–464 |doi=10.1016/0370-2693(78)90486-0 |year=1978 |bibcode=1978PhLB...78..462I}}</ref> and their ] extension, '''super-ambitwistors''', by ].<ref name = "Wi1">{{Cite journal |last=Witten |first=Edward |title=An interpretation of classical Yang–Mills theory |journal=Physics Letters B |volume=77 |issue=4–5 |pages=394–398 |doi=10.1016/0370-2693(78)90585-3 |year=1978 |bibcode=1978PhLB...77..394W}}</ref> Ambitwistor space is the space of complexified light rays or massless particles and can be regarded as a ] or ] of the original twistor description. By extending the ambitwistor correspondence to suitably defined formal neighborhoods, Isenberg, Yasskin and Green<ref name="IYG"/> showed the equivalence between the vanishing of the curvature along such extended null lines and the full Yang–Mills field equations.<ref name="IYG"/> Witten<ref name="Wi1"/> showed that a further extension, within the framework of super Yang–Mills theory, including ] and scalar fields, gave rise, in the case of ''N''&nbsp;=&nbsp;1 or 2 ], to the constraint equations, while for ''N''&nbsp;=&nbsp;3 (or 4), the vanishing condition for supercurvature along super null lines (super ambitwistors) implied the full set of ], including those for the fermionic fields. This was subsequently shown to give a {{clarify span|1-1|date=May 2024}} equivalence between the null curvature constraint equations and the supersymmetric Yang-Mills field equations.<ref name = "HLHS">{{Cite journal | last1=Harnad | first1=J. | last2=Légaré | first2=M. | last3=Hurtubise | first3=J. | last4=Shnider | first4=S. | title=Constraint equations and field equations in supersymmetric N = 3 Yang-Mills theory | journal=Nuclear Physics B | volume=256 | pages=609–620 | doi=10.1016/0550-3213(85)90410-9 | year=1985 | bibcode=1985NuPhB.256..609H }}</ref><ref name = "HHS">{{Cite journal | last1=Harnad | first1=J. | last2=Hurtubise | first2=J. | last3=Shnider | first3=S. | title=Supersymmetric Yang-Mills equations and supertwistors | journal=Annals of Physics | volume=193 | issue=1 | pages=40–79 | doi=10.1016/0003-4916(89)90351-5 | year=1989 | bibcode=1989AnPhy.193...40H }}</ref> Through dimensional reduction, it may also be deduced from the analogous super-ambitwistor correspondence for 10-dimensional, ''N''&nbsp;=&nbsp;1 super-Yang–Mills theory.<ref name=W2>{{cite journal | first1=E. | last1=Witten | title=Twistor-like transform in ten dimensions | journal=Nuclear Physics | volume=B266 | pages=245–264 | year=1986 | issue=2 | doi=10.1016/0550-3213(86)90090-8 | bibcode=1986NuPhB.266..245W }}</ref><ref name=HS>{{cite journal | first1=J. | last1=Harnad | first2=S. | last2=Shnider | title=Constraints and Field Equations for Ten Dimensional Super Yang-Mills Theory | journal=Commun. Math. Phys. | volume=106 | pages=183–199 | year=1986 | issue=2 | doi=10.1007/BF01454971 | bibcode=1986CMaPh.106..183H | s2cid=122622189 | url=http://projecteuclid.org/euclid.cmp/1104115696 }}</ref>
Recently, ] used twistor theory to understand certain ] ], by relating them to a certain ], the ] B model, embedded in twistor space. This field has come to be known as ]See .

Twistorial formulae for ] beyond the self-dual sector also arose in Witten's ],<ref name="Witten2004">{{cite journal |last1=Witten |first1=Edward |date=2004 |title=Perturbative Gauge Theory as a String Theory in Twistor Space |journal=Communications in Mathematical Physics |volume=252 |issue=1–3 |pages=189–258 |arxiv=hep-th/0312171 |bibcode=2004CMaPh.252..189W |doi=10.1007/s00220-004-1187-3 |s2cid=14300396}}</ref> which is a quantum theory of holomorphic maps of a ] into twistor space. This gave rise to the remarkably compact RSV (Roiban, Spradlin and Volovich) formulae for tree-level ] of Yang–Mills theories,<ref>{{Cite journal |last1=Roiban |first1=Radu |last2=Spradlin |first2=Marcus |last3=Volovich |first3=Anastasia |date=2004-07-30 |title=Tree-level S matrix of Yang–Mills theory |journal=Physical Review D |volume=70 |issue=2 |pages=026009 |doi=10.1103/PhysRevD.70.026009 |bibcode=2004PhRvD..70b6009R |arxiv=hep-th/0403190 |s2cid=10561912}}</ref> but its gravity degrees of freedom gave rise to a version of conformal ] limiting its applicability; ] is an unphysical theory containing ], but its interactions are combined with those of Yang–Mills theory in loop amplitudes calculated via twistor string theory.<ref>{{Cite journal |last1=Berkovits |first1=Nathan |last2=Witten |first2=Edward |date=2004 |title=Conformal supergravity in twistor-string theory |journal=Journal of High Energy Physics |language=en |volume=2004 |issue=8 |pages=009 |doi=10.1088/1126-6708/2004/08/009 |issn=1126-6708 |bibcode=2004JHEP...08..009B |arxiv=hep-th/0406051 |s2cid=119073647}}</ref>

Despite its shortcomings, twistor string theory led to rapid developments in the study of scattering amplitudes. One was the so-called MHV formalism<ref>{{Cite journal |last1=Cachazo |first1=Freddy |last2=Svrcek |first2=Peter |last3=Witten |first3=Edward |date=2004 |title=MHV vertices and tree amplitudes in gauge theory |journal=Journal of High Energy Physics |language=en |volume=2004 |issue=9 |pages=006 |doi=10.1088/1126-6708/2004/09/006 |issn=1126-6708 |bibcode=2004JHEP...09..006C |arxiv=hep-th/0403047 |s2cid=16328643}}</ref> loosely based on disconnected strings, but was given a more basic foundation in terms of a twistor action for full Yang–Mills theory in twistor space.<ref>{{Cite journal |last1=Adamo |first1=Tim |last2=Bullimore |first2=Mathew |last3=Mason |first3=Lionel |last4=Skinner |first4=David |title=Scattering amplitudes and Wilson loops in twistor space |journal=Journal of Physics A: Mathematical and Theoretical |volume=44 |issue=45 |pages=454008 |doi=10.1088/1751-8113/44/45/454008 |year=2011 |bibcode=2011JPhA...44S4008A |arxiv=1104.2890 |s2cid=59150535}}</ref> Another key development was the introduction of ].<ref>{{Cite journal |last1=Britto |first1=Ruth |author1-link= Ruth Britto |last2=Cachazo |first2=Freddy |last3=Feng |first3=Bo |last4=Witten |first4=Edward |date=2005-05-10 |title=Direct Proof of the Tree-Level Scattering Amplitude Recursion Relation in Yang–Mills Theory |journal=Physical Review Letters |volume=94 |issue=18 |pages=181602 |doi=10.1103/PhysRevLett.94.181602 |pmid=15904356 |bibcode=2005PhRvL..94r1602B |arxiv=hep-th/0501052 |s2cid=10180346}}</ref> This has a natural formulation in twistor space<ref>{{Cite journal |last1=Mason |first1=Lionel |last2=Skinner |first2=David |date=2010-01-01 |title=Scattering amplitudes and BCFW recursion in twistor space |journal=Journal of High Energy Physics |language=en |volume=2010 |issue=1 |pages=64 |doi=10.1007/JHEP01(2010)064 |issn=1029-8479 |bibcode=2010JHEP...01..064M |arxiv=0903.2083 |s2cid=8543696}}</ref><ref>{{Cite journal |last1=Arkani-Hamed |first1=N. |last2=Cachazo |first2=F. |last3=Cheung |first3=C. |last4=Kaplan |first4=J. |date=2010-03-01 |title=The S-matrix in twistor space |journal=Journal of High Energy Physics |language=en |volume=2010 |issue=3 |pages=110 |doi=10.1007/JHEP03(2010)110 |issn=1029-8479 |bibcode=2010JHEP...03..110A |arxiv=0903.2110 |s2cid=15898218}}</ref> that in turn led to remarkable formulations of scattering amplitudes in terms of ] formulae<ref>{{Cite journal |last1=Arkani-Hamed |first1=N. |last2=Cachazo |first2=F. |last3=Cheung |first3=C. |last4=Kaplan |first4=J. |date=2010-03-01 |title=A duality for the S matrix |journal=Journal of High Energy Physics |language=en |volume=2010 |issue=3 |pages=20 |doi=10.1007/JHEP03(2010)020 |issn=1029-8479 |bibcode=2010JHEP...03..020A |arxiv=0907.5418 |s2cid=5771375}}</ref><ref>{{Cite journal |last1=Mason |first1=Lionel |last2=Skinner |first2=David |date=2009 |title=Dual superconformal invariance, momentum twistors and Grassmannians |journal=Journal of High Energy Physics |language=en |volume=2009 |issue=11 |pages=045 |doi=10.1088/1126-6708/2009/11/045 |issn=1126-6708 |bibcode=2009JHEP...11..045M |arxiv=0909.0250 |s2cid=8375814}}</ref> and ]s.<ref>{{Cite journal |last=Hodges |first=Andrew |date=2013-05-01 |title=Eliminating spurious poles from gauge-theoretic amplitudes |journal=Journal of High Energy Physics |language=en |volume=2013 |issue=5 |pages=135 |doi=10.1007/JHEP05(2013)135 |issn=1029-8479 |bibcode=2013JHEP...05..135H |arxiv=0905.1473 |s2cid=18360641}}</ref> These ideas have evolved more recently into the positive ]<ref>{{cite arXiv |last1=Arkani-Hamed |first1=Nima |last2=Bourjaily |first2=Jacob L. |last3=Cachazo |first3=Freddy |last4=Goncharov |first4=Alexander B. |last5=Postnikov |first5=Alexander |last6=Trnka |first6=Jaroslav |date=2012-12-21 |title=Scattering Amplitudes and the Positive Grassmannian |eprint=1212.5605 |class=hep-th}}</ref> and ].

Twistor string theory was extended first by generalising the RSV Yang–Mills amplitude formula, and then by finding the underlying ]. The extension to gravity was given by Cachazo & Skinner,<ref>{{Cite journal |last1=Cachazo |first1=Freddy |last2=Skinner |first2=David |date=2013-04-16 |title=Gravity from Rational Curves in Twistor Space |journal=Physical Review Letters |volume=110 |issue=16 |pages=161301 |doi=10.1103/PhysRevLett.110.161301 |pmid=23679592 |bibcode=2013PhRvL.110p1301C |arxiv=1207.0741 |s2cid=7452729}}</ref> and formulated as a twistor string theory for ] by David Skinner.<ref>{{cite arXiv |last=Skinner |first=David |date=2013-01-04 |title=Twistor Strings for ''N''&nbsp;=&nbsp;8 Supergravity |eprint=1301.0868 |class=hep-th}}</ref> Analogous formulae were then found in all dimensions by Cachazo, He and Yuan for Yang–Mills theory and gravity<ref>{{Cite journal |last1=Cachazo |first1=Freddy |last2=He |first2=Song |last3=Yuan |first3=Ellis Ye |date=2014-07-01 |title=Scattering of massless particles: scalars, gluons and gravitons |journal=Journal of High Energy Physics |language=en |volume=2014 |issue=7 |pages=33 |doi=10.1007/JHEP07(2014)033 |issn=1029-8479 |bibcode=2014JHEP...07..033C |arxiv=1309.0885 |s2cid=53685436}}</ref> and subsequently for a variety of other theories.<ref>{{Cite journal |last1=Cachazo |first1=Freddy |last2=He |first2=Song |last3=Yuan |first3=Ellis Ye |date=2015-07-01 |title=Scattering equations and matrices: from Einstein to Yang–Mills, DBI and NLSM |journal=Journal of High Energy Physics |language=en |volume=2015 |issue=7 |pages=149 |doi=10.1007/JHEP07(2015)149 |issn=1029-8479 |bibcode=2015JHEP...07..149C |arxiv=1412.3479 |s2cid=54062406}}</ref> They were then understood as string theories in ambitwistor space by Mason and Skinner<ref>{{Cite journal |last1=Mason |first1=Lionel |last2=Skinner |first2=David |date=2014-07-01 |title=Ambitwistor strings and the scattering equations |journal=Journal of High Energy Physics |language=en |volume=2014 |issue=7 |pages=48 |doi=10.1007/JHEP07(2014)048 |issn=1029-8479 |bibcode=2014JHEP...07..048M |arxiv=1311.2564 |s2cid=53666173}}</ref> in a general framework that includes the original twistor string and extends to give a number of new models and formulae.<ref>{{Cite journal |last=Berkovits |first=Nathan |date=2014-03-01 |title=Infinite tension limit of the pure spinor superstring |journal=Journal of High Energy Physics |language=en |volume=2014 |issue=3 |pages=17 |doi=10.1007/JHEP03(2014)017 |issn=1029-8479 |bibcode=2014JHEP...03..017B |arxiv=1311.4156 |s2cid=28346354}}</ref><ref>{{Cite journal |last1=Geyer |first1=Yvonne |last2=Lipstein |first2=Arthur E. |last3=Mason |first3=Lionel |date=2014-08-19 |title=Ambitwistor Strings in Four Dimensions |journal=Physical Review Letters |volume=113 |issue=8 |pages=081602 |doi=10.1103/PhysRevLett.113.081602 |pmid=25192087 |bibcode=2014PhRvL.113h1602G |arxiv=1404.6219 |s2cid=40855791}}</ref><ref>{{Cite journal |last1=Casali |first1=Eduardo |last2=Geyer |first2=Yvonne |last3=Mason |first3=Lionel |last4=Monteiro |first4=Ricardo |last5=Roehrig |first5=Kai A. |date=2015-11-01 |title=New ambitwistor string theories |journal=Journal of High Energy Physics |language=en |volume=2015 |issue=11 |pages=38 |doi=10.1007/JHEP11(2015)038 |issn=1029-8479 |bibcode=2015JHEP...11..038C |arxiv=1506.08771 |s2cid=118801547}}</ref> As string theories they have the same ]s as conventional string theory; for example the ] supersymmetric versions are critical in ten dimensions and are equivalent to the full field theory of type&nbsp;II supergravities in ten dimensions (this is distinct from conventional string theories that also have a further infinite hierarchy of massive higher spin states that provide an ]). They extend to give formulae for loop amplitudes<ref>{{Cite journal |last1=Adamo |first1=Tim |last2=Casali |first2=Eduardo |last3=Skinner |first3=David |date=2014-04-01 |title=Ambitwistor strings and the scattering equations at one loop |journal=Journal of High Energy Physics |language=en |volume=2014 |issue=4 |pages=104 |doi=10.1007/JHEP04(2014)104 |issn=1029-8479 |bibcode=2014JHEP...04..104A |arxiv=1312.3828 |s2cid=119194796}}</ref><ref>{{Cite journal |last1=Geyer |first1=Yvonne |last2=Mason |first2=Lionel |last3=Monteiro |first3=Ricardo |last4=Tourkine |first4=Piotr |date=2015-09-16 |title=Loop Integrands for Scattering Amplitudes from the Riemann Sphere |journal=Physical Review Letters |volume=115 |issue=12 |pages=121603 |doi=10.1103/PhysRevLett.115.121603 |pmid=26430983 |bibcode=2015PhRvL.115l1603G |arxiv=1507.00321 |s2cid=36625491}}</ref> and can be defined on curved backgrounds.<ref>{{Cite journal |last1=Adamo |first1=Tim |last2=Casali |first2=Eduardo |last3=Skinner |first3=David |date=2015-02-01 |title=A worldsheet theory for supergravity |journal=Journal of High Energy Physics |language=en |volume=2015 |issue=2 |pages=116 |doi=10.1007/JHEP02(2015)116 |issn=1029-8479 |bibcode=2015JHEP...02..116A |arxiv=1409.5656 |s2cid=119234027}}</ref>

==The twistor correspondence==
Denote ] by <math>M</math>, with coordinates <math>x^a = (t, x, y, z)</math> and Lorentzian metric <math>\eta_{ab}</math> signature <math>(1, 3)</math>. Introduce 2-component spinor indices <math>A = 0, 1;\; A' = 0', 1',</math> and set

:<math>x^{AA'} = \frac{1}{\sqrt{2}}\begin{pmatrix} t - z & x + iy \\ x - iy & t + z \end{pmatrix}.</math>

Non-projective twistor space <math>\mathbb{T}</math> is a four-dimensional complex vector space with coordinates denoted by <math>Z^{\alpha} = \left(\omega^{A},\, \pi_{A'}\right)</math> where <math>\omega^A</math> and <math>\pi_{A'}</math> are two constant ]s. The hermitian form can be expressed by defining a complex conjugation from <math>\mathbb{T}</math> to its dual <math>\mathbb{T}^*</math> by <math>\bar Z_\alpha = \left(\bar\pi_A,\, \bar \omega^{A'}\right)</math> so that the Hermitian form can be expressed as

:<math>Z^\alpha \bar Z_\alpha = \omega^{A}\bar\pi_{A} + \bar\omega^{A'}\pi_{A'}.</math>

This together with the holomorphic volume form, <math>\varepsilon_{\alpha\beta\gamma\delta} Z^\alpha dZ^\beta \wedge dZ^\gamma \wedge dZ^\delta</math> is invariant under the group SU(2,2), a quadruple cover of the conformal group C(1,3) of compactified Minkowski spacetime.

Points in Minkowski space are related to subspaces of twistor space through the incidence relation

:<math>\omega^{A} = ix^{AA'}\pi_{A'}.</math>

The incidence relation is preserved under an overall re-scaling of the twistor, so usually one works in projective twistor space <math>\mathbb{PT},</math> which is isomorphic as a complex manifold to <math>\mathbb{CP}^3</math>. A point <math>x\in M</math> thereby determines a line <math>\mathbb{CP}^1</math> in <math>\mathbb{PT}</math> parametrised by <math>\pi_{A'}.</math> A twistor <math>Z^\alpha</math> is easiest understood in space-time for complex values of the coordinates where it defines a totally null two-plane that is self-dual. Take <math>x</math> to be real, then if <math>Z^\alpha \bar Z_\alpha</math> vanishes, then <math>x</math> lies on a light ray, whereas if <math>Z^\alpha \bar Z_\alpha</math> is non-vanishing, there are no solutions, and indeed then <math>Z^{\alpha}</math> corresponds to a massless particle with spin that are not localised in real space-time.

==Variations<!--'History of twistor theory' redirects here-->==
===Supertwistors===

Supertwistors are a ] extension of twistors introduced by Alan Ferber in 1978.<ref name="Fer">{{Citation|bibcode=1978NuPhB.132...55F|doi = 10.1016/0550-3213(78)90257-2|title=Supertwistors and conformal supersymmetry|year=1978|last1=Ferber|first1=A.|journal=Nuclear Physics B|volume=132|issue = 1|pages=55–64|postscript=. }}</ref> Non-projective twistor space is extended by ]ic coordinates where <math>\mathcal{N}</math> is the ] so that a twistor is now given by <math>\left(\omega^A,\, \pi_{A'},\, \eta^i\right), i = 1, \ldots, \mathcal{N}</math> with <math>\eta^i</math> anticommuting. The super conformal group <math>SU(2,2|\mathcal{N})</math> naturally acts on this space and a supersymmetric version of the Penrose transform takes cohomology classes on supertwistor space to massless supersymmetric multiplets on super Minkowski space. The <math>\mathcal{N} = 4</math> case provides the target for Penrose's original twistor string and the <math>\mathcal{N} = 8</math> case is that for Skinner's supergravity generalisation.

=== Higher dimensional generalization of the Klein correspondence ===

A higher dimensional generalization of the ] underlying twistor theory, applicable to isotropic subspaces of conformally compactified (complexified) Minkowski space and its super-space extensions, was developed by ] and S. Shnider.<ref name ="HS1"/><ref name = "HS2"/>

=== Hyperkähler manifolds ===
]s of dimension <math>4k</math> also admit a twistor correspondence with a twistor space of complex dimension <math>2k+1</math>.<ref>{{cite journal|last4=Roček | first4=M. | last3=Lindström | first3=U. | last2=Karlhede | first2=A. | last1=Hitchin | first1=N. J. | title=Hyper-Kähler metrics and supersymmetry | url=https://projecteuclid.org/download/pdf_1/euclid.cmp/1104116624 |mr=877637 | year=1987 | journal=Communications in Mathematical Physics | issn=0010-3616 | volume=108 | issue=4 | pages=535–589 | doi=10.1007/BF01214418| bibcode=1987CMaPh.108..535H | s2cid=120041594 }}</ref>

===Palatial twistor theory<!--'Googly problem' and 'Palatial twistor theory' redirect here-->===
The nonlinear graviton construction encodes only anti-self-dual, i.e., left-handed fields.<ref name="Penrose1976"/> A first step towards the problem of modifying twistor space so as to encode a general gravitational field is the encoding of ] fields. Infinitesimally, these are encoded in twistor functions or ] classes of ] −6. The task of using such twistor functions in a fully nonlinear way so as to obtain a '']'' nonlinear graviton has been referred to as the ('''gravitational''') '''googly problem'''.<ref name="Penrose1000">Penrose 2004, p. 1000.</ref> (The word "]" is a term used in the game of ] for a ball bowled with right-handed helicity using the apparent action that would normally give rise to left-handed helicity.) The most recent proposal in this direction by Penrose in 2015 was based on ] on twistor space and referred to as '''palatial twistor theory'''<!--boldface per WP:R#PLA-->.<ref>{{Cite journal|doi=10.1098/rsta.2014.0237|title=Palatial twistor theory and the twistor googly problem|year=2015|last1=Penrose|first1=Roger|journal=Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences|volume=373|issue=2047|pmid=26124255|s2cid=13038470|page=20140237|bibcode=2015RSPTA.37340237P |doi-access=free}}</ref> The theory is named after ], where ]<ref> – '']''</ref> suggested to Penrose the use of a type of "]", an important component of the theory. (The underlying twistor structure in palatial twistor theory was modeled not on the twistor space but on the non-commutative ] twistor ].)


==See also== ==See also==
*] * ]
* ]
* ]
* ]
* ]
* ]


==External links== ==Notes==
{{Reflist}}
*

*
==References==
*
* ] (2004), '']'', Alfred A. Knopf, ch. 33, pp.&nbsp;958–1009.
*
* Roger Penrose and ] (1984), ''Spinors and Space-Time; vol. 1, Two-Spinor Calculus and Relativitic Fields'', Cambridge University Press, Cambridge.
*
* Roger Penrose and Wolfgang Rindler (1986), ''Spinors and Space-Time; vol. 2, Spinor and Twistor Methods in Space-Time Geometry'', Cambridge University Press, Cambridge.
*

==Further reading==
* {{cite journal | doi = 10.1098/rspa.2017.0530 | volume=473 | title=Twistor theory at fifty: from contour integrals to twistor strings | year=2017 | journal=Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences | page=20170530 | last1 = Atiyah | first1 = Michael | last2 = Dunajski | first2 = Maciej | last3 = Mason | first3 = Lionel J.| issue=2206 | pmid=29118667 | pmc=5666237 | arxiv=1704.07464 | bibcode=2017RSPSA.47370530A | s2cid=5735524 | doi-access=free }}
* Baird, P., "."
* Huggett, S. and Tod, K. P. (1994).&nbsp;, second edition. Cambridge University Press.&nbsp;{{ISBN|9780521456890}}.&nbsp;]&nbsp;.
* Hughston, L. P. (1979) ''Twistors and Particles''. Springer Lecture Notes in Physics 97, Springer-Verlag. {{ISBN|978-3-540-09244-5}}.
* Hughston, L. P. and Ward, R. S., eds (1979) ''Advances in Twistor Theory''. Pitman. {{ISBN|0-273-08448-8}}.
* Mason, L. J. and Hughston, L. P., eds (1990) ''Further Advances in Twistor Theory, Volume I: The Penrose Transform and its Applications''. Pitman Research Notes in Mathematics Series 231, Longman Scientific and Technical. {{ISBN|0-582-00466-7}}.
* Mason, L. J., Hughston, L. P., and Kobak, P. K., eds (1995) ''Further Advances in Twistor Theory, Volume II: Integrable Systems, Conformal Geometry, and Gravitation''. Pitman Research Notes in Mathematics Series 232, Longman Scientific and Technical. {{ISBN|0-582-00465-9}}.
* Mason, L. J., Hughston, L. P., Kobak, P. K., and Pulverer, K., eds (2001) ''Further Advances in Twistor Theory, Volume III: Curved Twistor Spaces''. Research Notes in Mathematics 424, Chapman and Hall/CRC. {{ISBN|1-58488-047-3}}.
* {{Citation | last1=Penrose | first1=Roger | author1-link=Roger Penrose | title=Twistor Algebra | url=http://link.aip.org/link/JMAPAQ/v8/i2/p345/s1 | doi=10.1063/1.1705200 | mr=0216828 | year=1967 | journal=] | volume=8 | pages=345–366 | bibcode=1967JMP.....8..345P | issue=2 | url-status=dead | archive-url=https://archive.today/20130112095407/http://link.aip.org/link/JMAPAQ/v8/i2/p345/s1 | archive-date=2013-01-12 }}
* {{Citation | last1=Penrose | first1=Roger | title=Twistor Quantisation and Curved Space-time | doi=10.1007/BF00668831 | year=1968 | journal=International Journal of Theoretical Physics | volume=1 | issue=1 | pages=61–99|bibcode = 1968IJTP....1...61P | s2cid=123628735 }}
* {{Citation | last1=Penrose | first1=Roger | title=Solutions of the Zero-Rest-Mass Equations | url=http://link.aip.org/link/JMAPAQ/v10/i1/p38/s1 | doi=10.1063/1.1664756 | year=1969 | journal=] | volume=10 | issue=1 | pages=38–39 | bibcode=1969JMP....10...38P | url-status=dead | archive-url=https://archive.today/20130112125501/http://link.aip.org/link/JMAPAQ/v10/i1/p38/s1 | archive-date=2013-01-12 }}
* {{Citation | last1=Penrose | first1=Roger | title=The Twistor Programme | doi=10.1016/0034-4877(77)90047-7 | mr=0465032 | year=1977 | journal=Reports on Mathematical Physics | volume=12 | issue=1 | pages=65–76|bibcode = 1977RpMP...12...65P }}
* {{cite journal | last1 = Penrose | first1 = Roger | year = 1999 | title = The Central Programme of Twistor Theory | url = http://users.ox.ac.uk/~tweb/00002/index.shtml | journal = Chaos, Solitons and Fractals | volume = 10 | issue = 2–3| pages = 581–611 | doi = 10.1016/S0960-0779(98)00333-6 | bibcode = 1999CSF....10..581P }}
* {{Citation | last1=Witten | first1=Edward | author1-link=Edward Witten | title=Perturbative Gauge Theory as a String Theory in Twistor Space | arxiv=hep-th/0312171 | doi=10.1007/s00220-004-1187-3 | year=2004 |bibcode = 2004CMaPh.252..189W | journal=Communications in Mathematical Physics | volume=252 | issue=1–3 | pages=189–258 | s2cid=14300396 }}

==External links==
* ] (1999), ""
* Penrose, Roger; Hadrovich, Fedja. ""
* Hadrovich, Fedja, ""
* Penrose, Roger. ""
* ] (1976), ""
* {{cite journal |last=Dunajski |first=Maciej |title=Twistor Theory and Differential Equations |arxiv=0902.0274 |date=2009 |journal=J. Phys. A: Math. Theor. |volume=42 |issue=40 |page=404004 |doi=10.1088/1751-8113/42/40/404004 |bibcode=2009JPhA...42N4004D |s2cid=62774126 }}
* ],
* Huggett, Stephen (2005), ""
* Mason, L. J., ""
* {{cite thesis |type=PhD |last=Sämann |first=Christian |date=2006 |title=Aspects of Twistor Geometry and Supersymmetric Field Theories within Superstring Theory |arxiv=hep-th/0603098 |publisher=Universität Hannover}}
* Sparling, George (1999), ""
* {{cite web |last=Spradlin |first=Marcus |date=2012 |url=https://conservancy.umn.edu/bitstream/handle/11299/130081/1/spradlin.pdf |title=Progress and Prospects in Twistor String Theory |hdl=11299/130081 }}
*
* Universe Review: ""
* archives.

{{Theories of gravitation}}
{{quantum gravity}}
{{Roger Penrose}}
{{Topics of twistor theory}}
{{Standard model of physics}}


] ]
] ]
] ]

]
]
]
]

Latest revision as of 06:14, 28 August 2024

Possible path to quantum gravity proposed by Roger Penrose

In theoretical physics, twistor theory was proposed by Roger Penrose in 1967 as a possible path to quantum gravity and has evolved into a widely studied branch of theoretical and mathematical physics. Penrose's idea was that twistor space should be the basic arena for physics from which space-time itself should emerge. It has led to powerful mathematical tools that have applications to differential and integral geometry, nonlinear differential equations and representation theory, and in physics to general relativity, quantum field theory, and the theory of scattering amplitudes.

Twistor theory arose in the context of the rapidly expanding mathematical developments in Einstein's theory of general relativity in the late 1950s and in the 1960s and carries a number of influences from that period. In particular, Roger Penrose has credited Ivor Robinson as an important early influence in the development of twistor theory, through his construction of so-called Robinson congruences.

Overview

Projective twistor space P T {\displaystyle \mathbb {PT} } is projective 3-space C P 3 {\displaystyle \mathbb {CP} ^{3}} , the simplest 3-dimensional compact algebraic variety. It has a physical interpretation as the space of massless particles with spin. It is the projectivisation of a 4-dimensional complex vector space, non-projective twistor space T {\displaystyle \mathbb {T} } , with a Hermitian form of signature (2, 2) and a holomorphic volume form. This can be most naturally understood as the space of chiral (Weyl) spinors for the conformal group S O ( 4 , 2 ) / Z 2 {\displaystyle SO(4,2)/\mathbb {Z} _{2}} of Minkowski space; it is the fundamental representation of the spin group S U ( 2 , 2 ) {\displaystyle SU(2,2)} of the conformal group. This definition can be extended to arbitrary dimensions except that beyond dimension four, one defines projective twistor space to be the space of projective pure spinors for the conformal group.

In its original form, twistor theory encodes physical fields on Minkowski space in terms of complex analytic objects on twistor space via the Penrose transform. This is especially natural for massless fields of arbitrary spin. In the first instance these are obtained via contour integral formulae in terms of free holomorphic functions on regions in twistor space. The holomorphic twistor functions that give rise to solutions to the massless field equations can be more deeply understood as Čech representatives of analytic cohomology classes on regions in P T {\displaystyle \mathbb {PT} } . These correspondences have been extended to certain nonlinear fields, including self-dual gravity in Penrose's nonlinear graviton construction and self-dual Yang–Mills fields in the so-called Ward construction; the former gives rise to deformations of the underlying complex structure of regions in P T {\displaystyle \mathbb {PT} } , and the latter to certain holomorphic vector bundles over regions in P T {\displaystyle \mathbb {PT} } . These constructions have had wide applications, including inter alia the theory of integrable systems.

The self-duality condition is a major limitation for incorporating the full nonlinearities of physical theories, although it does suffice for Yang–Mills–Higgs monopoles and instantons (see ADHM construction). An early attempt to overcome this restriction was the introduction of ambitwistors by Isenberg, Yasskin and Green, and their superspace extension, super-ambitwistors, by Edward Witten. Ambitwistor space is the space of complexified light rays or massless particles and can be regarded as a complexification or cotangent bundle of the original twistor description. By extending the ambitwistor correspondence to suitably defined formal neighborhoods, Isenberg, Yasskin and Green showed the equivalence between the vanishing of the curvature along such extended null lines and the full Yang–Mills field equations. Witten showed that a further extension, within the framework of super Yang–Mills theory, including fermionic and scalar fields, gave rise, in the case of N = 1 or 2 supersymmetry, to the constraint equations, while for N = 3 (or 4), the vanishing condition for supercurvature along super null lines (super ambitwistors) implied the full set of field equations, including those for the fermionic fields. This was subsequently shown to give a 1-1 equivalence between the null curvature constraint equations and the supersymmetric Yang-Mills field equations. Through dimensional reduction, it may also be deduced from the analogous super-ambitwistor correspondence for 10-dimensional, N = 1 super-Yang–Mills theory.

Twistorial formulae for interactions beyond the self-dual sector also arose in Witten's twistor string theory, which is a quantum theory of holomorphic maps of a Riemann surface into twistor space. This gave rise to the remarkably compact RSV (Roiban, Spradlin and Volovich) formulae for tree-level S-matrices of Yang–Mills theories, but its gravity degrees of freedom gave rise to a version of conformal supergravity limiting its applicability; conformal gravity is an unphysical theory containing ghosts, but its interactions are combined with those of Yang–Mills theory in loop amplitudes calculated via twistor string theory.

Despite its shortcomings, twistor string theory led to rapid developments in the study of scattering amplitudes. One was the so-called MHV formalism loosely based on disconnected strings, but was given a more basic foundation in terms of a twistor action for full Yang–Mills theory in twistor space. Another key development was the introduction of BCFW recursion. This has a natural formulation in twistor space that in turn led to remarkable formulations of scattering amplitudes in terms of Grassmann integral formulae and polytopes. These ideas have evolved more recently into the positive Grassmannian and amplituhedron.

Twistor string theory was extended first by generalising the RSV Yang–Mills amplitude formula, and then by finding the underlying string theory. The extension to gravity was given by Cachazo & Skinner, and formulated as a twistor string theory for maximal supergravity by David Skinner. Analogous formulae were then found in all dimensions by Cachazo, He and Yuan for Yang–Mills theory and gravity and subsequently for a variety of other theories. They were then understood as string theories in ambitwistor space by Mason and Skinner in a general framework that includes the original twistor string and extends to give a number of new models and formulae. As string theories they have the same critical dimensions as conventional string theory; for example the type II supersymmetric versions are critical in ten dimensions and are equivalent to the full field theory of type II supergravities in ten dimensions (this is distinct from conventional string theories that also have a further infinite hierarchy of massive higher spin states that provide an ultraviolet completion). They extend to give formulae for loop amplitudes and can be defined on curved backgrounds.

The twistor correspondence

Denote Minkowski space by M {\displaystyle M} , with coordinates x a = ( t , x , y , z ) {\displaystyle x^{a}=(t,x,y,z)} and Lorentzian metric η a b {\displaystyle \eta _{ab}} signature ( 1 , 3 ) {\displaystyle (1,3)} . Introduce 2-component spinor indices A = 0 , 1 ; A = 0 , 1 , {\displaystyle A=0,1;\;A'=0',1',} and set

x A A = 1 2 ( t z x + i y x i y t + z ) . {\displaystyle x^{AA'}={\frac {1}{\sqrt {2}}}{\begin{pmatrix}t-z&x+iy\\x-iy&t+z\end{pmatrix}}.}

Non-projective twistor space T {\displaystyle \mathbb {T} } is a four-dimensional complex vector space with coordinates denoted by Z α = ( ω A , π A ) {\displaystyle Z^{\alpha }=\left(\omega ^{A},\,\pi _{A'}\right)} where ω A {\displaystyle \omega ^{A}} and π A {\displaystyle \pi _{A'}} are two constant Weyl spinors. The hermitian form can be expressed by defining a complex conjugation from T {\displaystyle \mathbb {T} } to its dual T {\displaystyle \mathbb {T} ^{*}} by Z ¯ α = ( π ¯ A , ω ¯ A ) {\displaystyle {\bar {Z}}_{\alpha }=\left({\bar {\pi }}_{A},\,{\bar {\omega }}^{A'}\right)} so that the Hermitian form can be expressed as

Z α Z ¯ α = ω A π ¯ A + ω ¯ A π A . {\displaystyle Z^{\alpha }{\bar {Z}}_{\alpha }=\omega ^{A}{\bar {\pi }}_{A}+{\bar {\omega }}^{A'}\pi _{A'}.}

This together with the holomorphic volume form, ε α β γ δ Z α d Z β d Z γ d Z δ {\displaystyle \varepsilon _{\alpha \beta \gamma \delta }Z^{\alpha }dZ^{\beta }\wedge dZ^{\gamma }\wedge dZ^{\delta }} is invariant under the group SU(2,2), a quadruple cover of the conformal group C(1,3) of compactified Minkowski spacetime.

Points in Minkowski space are related to subspaces of twistor space through the incidence relation

ω A = i x A A π A . {\displaystyle \omega ^{A}=ix^{AA'}\pi _{A'}.}

The incidence relation is preserved under an overall re-scaling of the twistor, so usually one works in projective twistor space P T , {\displaystyle \mathbb {PT} ,} which is isomorphic as a complex manifold to C P 3 {\displaystyle \mathbb {CP} ^{3}} . A point x M {\displaystyle x\in M} thereby determines a line C P 1 {\displaystyle \mathbb {CP} ^{1}} in P T {\displaystyle \mathbb {PT} } parametrised by π A . {\displaystyle \pi _{A'}.} A twistor Z α {\displaystyle Z^{\alpha }} is easiest understood in space-time for complex values of the coordinates where it defines a totally null two-plane that is self-dual. Take x {\displaystyle x} to be real, then if Z α Z ¯ α {\displaystyle Z^{\alpha }{\bar {Z}}_{\alpha }} vanishes, then x {\displaystyle x} lies on a light ray, whereas if Z α Z ¯ α {\displaystyle Z^{\alpha }{\bar {Z}}_{\alpha }} is non-vanishing, there are no solutions, and indeed then Z α {\displaystyle Z^{\alpha }} corresponds to a massless particle with spin that are not localised in real space-time.

Variations

Supertwistors

Supertwistors are a supersymmetric extension of twistors introduced by Alan Ferber in 1978. Non-projective twistor space is extended by fermionic coordinates where N {\displaystyle {\mathcal {N}}} is the number of supersymmetries so that a twistor is now given by ( ω A , π A , η i ) , i = 1 , , N {\displaystyle \left(\omega ^{A},\,\pi _{A'},\,\eta ^{i}\right),i=1,\ldots ,{\mathcal {N}}} with η i {\displaystyle \eta ^{i}} anticommuting. The super conformal group S U ( 2 , 2 | N ) {\displaystyle SU(2,2|{\mathcal {N}})} naturally acts on this space and a supersymmetric version of the Penrose transform takes cohomology classes on supertwistor space to massless supersymmetric multiplets on super Minkowski space. The N = 4 {\displaystyle {\mathcal {N}}=4} case provides the target for Penrose's original twistor string and the N = 8 {\displaystyle {\mathcal {N}}=8} case is that for Skinner's supergravity generalisation.

Higher dimensional generalization of the Klein correspondence

A higher dimensional generalization of the Klein correspondence underlying twistor theory, applicable to isotropic subspaces of conformally compactified (complexified) Minkowski space and its super-space extensions, was developed by J. Harnad and S. Shnider.

Hyperkähler manifolds

Hyperkähler manifolds of dimension 4 k {\displaystyle 4k} also admit a twistor correspondence with a twistor space of complex dimension 2 k + 1 {\displaystyle 2k+1} .

Palatial twistor theory

The nonlinear graviton construction encodes only anti-self-dual, i.e., left-handed fields. A first step towards the problem of modifying twistor space so as to encode a general gravitational field is the encoding of right-handed fields. Infinitesimally, these are encoded in twistor functions or cohomology classes of homogeneity −6. The task of using such twistor functions in a fully nonlinear way so as to obtain a right-handed nonlinear graviton has been referred to as the (gravitational) googly problem. (The word "googly" is a term used in the game of cricket for a ball bowled with right-handed helicity using the apparent action that would normally give rise to left-handed helicity.) The most recent proposal in this direction by Penrose in 2015 was based on noncommutative geometry on twistor space and referred to as palatial twistor theory. The theory is named after Buckingham Palace, where Michael Atiyah suggested to Penrose the use of a type of "noncommutative algebra", an important component of the theory. (The underlying twistor structure in palatial twistor theory was modeled not on the twistor space but on the non-commutative holomorphic twistor quantum algebra.)

See also

Notes

  1. Penrose, R. (1967). "Twistor Algebra". Journal of Mathematical Physics. 8 (2): 345–366. Bibcode:1967JMP.....8..345P. doi:10.1063/1.1705200.
  2. Penrose, R.; MacCallum, M.A.H. (1973). "Twistor theory: An approach to the quantisation of fields and space-time". Physics Reports. 6 (4): 241–315. Bibcode:1973PhR.....6..241P. doi:10.1016/0370-1573(73)90008-2.
  3. Penrose, Roger (1987). "On the Origins of Twistor Theory". In Rindler, Wolfgang; Trautman, Andrzej (eds.). Gravitation and Geometry, a Volume in Honour of Ivor Robinson. Bibliopolis. ISBN 88-7088-142-3.
  4. ^ Harnad, J.; Shnider, S. (1992). "Isotropic geometry and twistors in higher dimensions. I. The generalized Klein correspondence and spinor flags in even dimensions". Journal of Mathematical Physics. 33 (9): 3197–3208. Bibcode:1992JMP....33.3197H. doi:10.1063/1.529538.
  5. ^ Harnad, J.; Shnider, S. (1995). "Isotropic geometry and twistors in higher dimensions. II. Odd dimensions, reality conditions, and twistor superspaces". Journal of Mathematical Physics. 36 (9): 1945–1970. Bibcode:1995JMP....36.1945H. doi:10.1063/1.531096.
  6. Penrose, Roger; Rindler, Wolfgang (1986). Spinors and Space-Time. Cambridge University Press. pp. Appendix. doi:10.1017/cbo9780511524486. ISBN 9780521252676.
  7. Hughston, L. P.; Mason, L. J. (1988). "A generalised Kerr-Robinson theorem". Classical and Quantum Gravity. 5 (2): 275. Bibcode:1988CQGra...5..275H. doi:10.1088/0264-9381/5/2/007. ISSN 0264-9381. S2CID 250783071.
  8. ^ Penrose, R. (1976). "Non-linear gravitons and curved twistor theory". Gen. Rel. Grav. 7 (1): 31–52. Bibcode:1976GReGr...7...31P. doi:10.1007/BF00762011. S2CID 123258136.
  9. Ward, R. S. (1977). "On self-dual gauge fields". Physics Letters A. 61 (2): 81–82. Bibcode:1977PhLA...61...81W. doi:10.1016/0375-9601(77)90842-8.
  10. Ward, R. S. (1990). Twistor geometry and field theory. Wells, R. O. Cambridge : Cambridge University Press. ISBN 978-0521422680. OCLC 17260289.
  11. Mason, Lionel J.; Woodhouse, Nicholas M. J. (1996). Integrability, self-duality, and twistor theory. Oxford: Clarendon Press. ISBN 9780198534983. OCLC 34545252.
  12. Dunajski, Maciej (2010). Solitons, instantons, and twistors. Oxford: Oxford University Press. ISBN 9780198570622. OCLC 507435856.
  13. Atiyah, M. F.; Hitchin, N. J.; Drinfeld, V. G.; Manin, Yu. I. (1978). "Construction of instantons". Physics Letters A. 65 (3): 185–187. Bibcode:1978PhLA...65..185A. doi:10.1016/0375-9601(78)90141-x.
  14. ^ Isenberg, James; Yasskin, Philip B.; Green, Paul S. (1978). "Non-self-dual gauge fields". Physics Letters B. 78 (4): 462–464. Bibcode:1978PhLB...78..462I. doi:10.1016/0370-2693(78)90486-0.
  15. ^ Witten, Edward (1978). "An interpretation of classical Yang–Mills theory". Physics Letters B. 77 (4–5): 394–398. Bibcode:1978PhLB...77..394W. doi:10.1016/0370-2693(78)90585-3.
  16. Harnad, J.; Légaré, M.; Hurtubise, J.; Shnider, S. (1985). "Constraint equations and field equations in supersymmetric N = 3 Yang-Mills theory". Nuclear Physics B. 256: 609–620. Bibcode:1985NuPhB.256..609H. doi:10.1016/0550-3213(85)90410-9.
  17. Harnad, J.; Hurtubise, J.; Shnider, S. (1989). "Supersymmetric Yang-Mills equations and supertwistors". Annals of Physics. 193 (1): 40–79. Bibcode:1989AnPhy.193...40H. doi:10.1016/0003-4916(89)90351-5.
  18. Witten, E. (1986). "Twistor-like transform in ten dimensions". Nuclear Physics. B266 (2): 245–264. Bibcode:1986NuPhB.266..245W. doi:10.1016/0550-3213(86)90090-8.
  19. Harnad, J.; Shnider, S. (1986). "Constraints and Field Equations for Ten Dimensional Super Yang-Mills Theory". Commun. Math. Phys. 106 (2): 183–199. Bibcode:1986CMaPh.106..183H. doi:10.1007/BF01454971. S2CID 122622189.
  20. Witten, Edward (2004). "Perturbative Gauge Theory as a String Theory in Twistor Space". Communications in Mathematical Physics. 252 (1–3): 189–258. arXiv:hep-th/0312171. Bibcode:2004CMaPh.252..189W. doi:10.1007/s00220-004-1187-3. S2CID 14300396.
  21. Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia (2004-07-30). "Tree-level S matrix of Yang–Mills theory". Physical Review D. 70 (2): 026009. arXiv:hep-th/0403190. Bibcode:2004PhRvD..70b6009R. doi:10.1103/PhysRevD.70.026009. S2CID 10561912.
  22. Berkovits, Nathan; Witten, Edward (2004). "Conformal supergravity in twistor-string theory". Journal of High Energy Physics. 2004 (8): 009. arXiv:hep-th/0406051. Bibcode:2004JHEP...08..009B. doi:10.1088/1126-6708/2004/08/009. ISSN 1126-6708. S2CID 119073647.
  23. Cachazo, Freddy; Svrcek, Peter; Witten, Edward (2004). "MHV vertices and tree amplitudes in gauge theory". Journal of High Energy Physics. 2004 (9): 006. arXiv:hep-th/0403047. Bibcode:2004JHEP...09..006C. doi:10.1088/1126-6708/2004/09/006. ISSN 1126-6708. S2CID 16328643.
  24. Adamo, Tim; Bullimore, Mathew; Mason, Lionel; Skinner, David (2011). "Scattering amplitudes and Wilson loops in twistor space". Journal of Physics A: Mathematical and Theoretical. 44 (45): 454008. arXiv:1104.2890. Bibcode:2011JPhA...44S4008A. doi:10.1088/1751-8113/44/45/454008. S2CID 59150535.
  25. Britto, Ruth; Cachazo, Freddy; Feng, Bo; Witten, Edward (2005-05-10). "Direct Proof of the Tree-Level Scattering Amplitude Recursion Relation in Yang–Mills Theory". Physical Review Letters. 94 (18): 181602. arXiv:hep-th/0501052. Bibcode:2005PhRvL..94r1602B. doi:10.1103/PhysRevLett.94.181602. PMID 15904356. S2CID 10180346.
  26. Mason, Lionel; Skinner, David (2010-01-01). "Scattering amplitudes and BCFW recursion in twistor space". Journal of High Energy Physics. 2010 (1): 64. arXiv:0903.2083. Bibcode:2010JHEP...01..064M. doi:10.1007/JHEP01(2010)064. ISSN 1029-8479. S2CID 8543696.
  27. Arkani-Hamed, N.; Cachazo, F.; Cheung, C.; Kaplan, J. (2010-03-01). "The S-matrix in twistor space". Journal of High Energy Physics. 2010 (3): 110. arXiv:0903.2110. Bibcode:2010JHEP...03..110A. doi:10.1007/JHEP03(2010)110. ISSN 1029-8479. S2CID 15898218.
  28. Arkani-Hamed, N.; Cachazo, F.; Cheung, C.; Kaplan, J. (2010-03-01). "A duality for the S matrix". Journal of High Energy Physics. 2010 (3): 20. arXiv:0907.5418. Bibcode:2010JHEP...03..020A. doi:10.1007/JHEP03(2010)020. ISSN 1029-8479. S2CID 5771375.
  29. Mason, Lionel; Skinner, David (2009). "Dual superconformal invariance, momentum twistors and Grassmannians". Journal of High Energy Physics. 2009 (11): 045. arXiv:0909.0250. Bibcode:2009JHEP...11..045M. doi:10.1088/1126-6708/2009/11/045. ISSN 1126-6708. S2CID 8375814.
  30. Hodges, Andrew (2013-05-01). "Eliminating spurious poles from gauge-theoretic amplitudes". Journal of High Energy Physics. 2013 (5): 135. arXiv:0905.1473. Bibcode:2013JHEP...05..135H. doi:10.1007/JHEP05(2013)135. ISSN 1029-8479. S2CID 18360641.
  31. Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy; Goncharov, Alexander B.; Postnikov, Alexander; Trnka, Jaroslav (2012-12-21). "Scattering Amplitudes and the Positive Grassmannian". arXiv:1212.5605 .
  32. Cachazo, Freddy; Skinner, David (2013-04-16). "Gravity from Rational Curves in Twistor Space". Physical Review Letters. 110 (16): 161301. arXiv:1207.0741. Bibcode:2013PhRvL.110p1301C. doi:10.1103/PhysRevLett.110.161301. PMID 23679592. S2CID 7452729.
  33. Skinner, David (2013-01-04). "Twistor Strings for N = 8 Supergravity". arXiv:1301.0868 .
  34. Cachazo, Freddy; He, Song; Yuan, Ellis Ye (2014-07-01). "Scattering of massless particles: scalars, gluons and gravitons". Journal of High Energy Physics. 2014 (7): 33. arXiv:1309.0885. Bibcode:2014JHEP...07..033C. doi:10.1007/JHEP07(2014)033. ISSN 1029-8479. S2CID 53685436.
  35. Cachazo, Freddy; He, Song; Yuan, Ellis Ye (2015-07-01). "Scattering equations and matrices: from Einstein to Yang–Mills, DBI and NLSM". Journal of High Energy Physics. 2015 (7): 149. arXiv:1412.3479. Bibcode:2015JHEP...07..149C. doi:10.1007/JHEP07(2015)149. ISSN 1029-8479. S2CID 54062406.
  36. Mason, Lionel; Skinner, David (2014-07-01). "Ambitwistor strings and the scattering equations". Journal of High Energy Physics. 2014 (7): 48. arXiv:1311.2564. Bibcode:2014JHEP...07..048M. doi:10.1007/JHEP07(2014)048. ISSN 1029-8479. S2CID 53666173.
  37. Berkovits, Nathan (2014-03-01). "Infinite tension limit of the pure spinor superstring". Journal of High Energy Physics. 2014 (3): 17. arXiv:1311.4156. Bibcode:2014JHEP...03..017B. doi:10.1007/JHEP03(2014)017. ISSN 1029-8479. S2CID 28346354.
  38. Geyer, Yvonne; Lipstein, Arthur E.; Mason, Lionel (2014-08-19). "Ambitwistor Strings in Four Dimensions". Physical Review Letters. 113 (8): 081602. arXiv:1404.6219. Bibcode:2014PhRvL.113h1602G. doi:10.1103/PhysRevLett.113.081602. PMID 25192087. S2CID 40855791.
  39. Casali, Eduardo; Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Roehrig, Kai A. (2015-11-01). "New ambitwistor string theories". Journal of High Energy Physics. 2015 (11): 38. arXiv:1506.08771. Bibcode:2015JHEP...11..038C. doi:10.1007/JHEP11(2015)038. ISSN 1029-8479. S2CID 118801547.
  40. Adamo, Tim; Casali, Eduardo; Skinner, David (2014-04-01). "Ambitwistor strings and the scattering equations at one loop". Journal of High Energy Physics. 2014 (4): 104. arXiv:1312.3828. Bibcode:2014JHEP...04..104A. doi:10.1007/JHEP04(2014)104. ISSN 1029-8479. S2CID 119194796.
  41. Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr (2015-09-16). "Loop Integrands for Scattering Amplitudes from the Riemann Sphere". Physical Review Letters. 115 (12): 121603. arXiv:1507.00321. Bibcode:2015PhRvL.115l1603G. doi:10.1103/PhysRevLett.115.121603. PMID 26430983. S2CID 36625491.
  42. Adamo, Tim; Casali, Eduardo; Skinner, David (2015-02-01). "A worldsheet theory for supergravity". Journal of High Energy Physics. 2015 (2): 116. arXiv:1409.5656. Bibcode:2015JHEP...02..116A. doi:10.1007/JHEP02(2015)116. ISSN 1029-8479. S2CID 119234027.
  43. Ferber, A. (1978), "Supertwistors and conformal supersymmetry", Nuclear Physics B, 132 (1): 55–64, Bibcode:1978NuPhB.132...55F, doi:10.1016/0550-3213(78)90257-2.
  44. Hitchin, N. J.; Karlhede, A.; Lindström, U.; Roček, M. (1987). "Hyper-Kähler metrics and supersymmetry". Communications in Mathematical Physics. 108 (4): 535–589. Bibcode:1987CMaPh.108..535H. doi:10.1007/BF01214418. ISSN 0010-3616. MR 0877637. S2CID 120041594.
  45. Penrose 2004, p. 1000.
  46. Penrose, Roger (2015). "Palatial twistor theory and the twistor googly problem". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 373 (2047): 20140237. Bibcode:2015RSPTA.37340237P. doi:10.1098/rsta.2014.0237. PMID 26124255. S2CID 13038470.
  47. "Michael Atiyah's Imaginative State of Mind"Quanta Magazine

References

  • Roger Penrose (2004), The Road to Reality, Alfred A. Knopf, ch. 33, pp. 958–1009.
  • Roger Penrose and Wolfgang Rindler (1984), Spinors and Space-Time; vol. 1, Two-Spinor Calculus and Relativitic Fields, Cambridge University Press, Cambridge.
  • Roger Penrose and Wolfgang Rindler (1986), Spinors and Space-Time; vol. 2, Spinor and Twistor Methods in Space-Time Geometry, Cambridge University Press, Cambridge.

Further reading

External links

Theories of gravitation
Standard
Newtonian gravity (NG)
General relativity (GR)
Alternatives to
general relativity
Paradigms
Classical
Quantum-mechanical
Unified-field-theoric
Unified-field-theoric and
quantum-mechanical
Generalisations /
extensions of GR
Pre-Newtonian
theories and
toy models
Related topics
Quantum gravity
Central concepts
Toy models
Quantum field theory
in curved spacetime
Black holes
Approaches
String theory
Canonical quantum gravity
Euclidean quantum gravity
Others
Applications
See also: Template:Quantum mechanics topics
Roger Penrose
Books
Coauthored books
Concepts
Related
Topics of twistor theory
Objectives
Principles
Final objective
Mathematical concepts
Twistors
Physical concepts
Standard Model
Background
Constituents
Beyond the
Standard Model
Evidence
Theories
Supersymmetry
Quantum gravity
Experiments
Categories: