Misplaced Pages

Petalite: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 12:10, 21 September 2016 editBender the Bot (talk | contribs)Bots1,008,858 editsm Discovery and occurrence: http→https for Google Books and Google News using AWB← Previous edit Revision as of 07:01, 5 December 2016 edit undoChris.urs-o (talk | contribs)Extended confirmed users, Pending changes reviewers, Rollbackers50,453 edits formatNext edit →
Line 9: Line 9:
| formula = LiAlSi<sub>4</sub>O<sub>10</sub> | formula = LiAlSi<sub>4</sub>O<sub>10</sub>
| molweight = | molweight =
| strunz = 09.EF.05 | strunz = 9.EF.05
| system = ]
| symmetry = Monoclinic prismatic<br/>]: (2/m) <br/>]: P 2/a
| class = Prismatic (2/m) <br/><small>(same ])</small>
| unit cell = a = 11.737 Å, b = 5.171 Å, c = 7.63 Å; β = 112.54°; Z = 2
| symmetry = ''P2/a''
| unit cell = a = 11.737&nbsp;Å, <br/>b = 5.171&nbsp;Å, <br/>c = 7.63&nbsp;Å; <br/>β = 112.54°; Z&nbsp;=&nbsp;2
| color = Colorless, grey, yellow, pink, to white | color = Colorless, grey, yellow, pink, to white
| habit = Tabular prismatic crystals and columnar masses | habit = Tabular prismatic crystals and columnar masses
| system = ]
| twinning = Common on {001}, lamellar | twinning = Common on {001}, lamellar
| cleavage = Perfect on {001}, poor on {201} with 38.5° angle between the two | cleavage = Perfect on {001}, poor on {201} with 38.5° angle between the two

Revision as of 07:01, 5 December 2016

Petalite
Petalite from Minas Gerais State, Brazil (size: 3x4 cm)
General
CategoryTectosilicate
Formula
(repeating unit)
LiAlSi4O10
Strunz classification9.EF.05
Crystal systemMonoclinic
Crystal classPrismatic (2/m)
(same H-M symbol)
Space groupP2/a
Unit cella = 11.737 Å,
b = 5.171 Å,
c = 7.63 Å;
β = 112.54°; Z = 2
Identification
ColorColorless, grey, yellow, pink, to white
Crystal habitTabular prismatic crystals and columnar masses
TwinningCommon on {001}, lamellar
CleavagePerfect on {001}, poor on {201} with 38.5° angle between the two
FractureSubconchoidal
TenacityBrittle
Mohs scale hardness6 - 6.5
LusterVitreous, pearly on cleavages
StreakColorless
DiaphaneityTransparent to translucent
Specific gravity2.4
Optical propertiesBiaxial (+)
Refractive indexnα=1.504, nβ=1.510, nγ=1.516
Birefringenceδ = 0.012
2V angle82 – 84° measured
Melting point1350 °C
Fusibility5
SolubilityInsoluble
References

Petalite, also known as castorite, is a lithium aluminium tectosilicate mineral LiAlSi4O10, crystallizing in the monoclinic system. Petalite is a member of the feldspathoid group. It occurs as colorless, grey, yellow, yellow grey, to white tabular crystals and columnar masses. Occurs in lithium-bearing pegmatites with spodumene, lepidolite, and tourmaline. Petalite is an important ore of lithium, and is converted to spodumene and quartz by heating to ~500 °C and under 3 kbar of pressure in the presence of a dense hydrous alkali borosilicate fluid with a minor carbonate component. The colorless varieties are often used as gemstones.

Faceted petalite, 12.66 ct, Brazil

Discovery and occurrence

Petalite from Paprok, Nuristan Province, Afghanistan (size: 7.3 x 2.9 x 2.4 cm)

Discovered in 1800, by Brazilian naturalist Jose Bonifacio de Andrada e Silva. Type locality: Utö Island, Haninge, Stockholm, Sweden. The name is derived from the Greek word petalon, which means leaf.

Economic deposits of petalite are found near Kalgoorlie, Western Australia; Aracuai, Minas Gerais, Brazil; Karibib, Namibia; Manitoba, Canada; and Bikita, Zimbabwe.

The first important economic application for petalite was as a raw material for the glass-ceramic cooking ware CorningWare. It has been used as a raw material for ceramic glazes.

References

  1. "Petalite". Digital Fire. Retrieved 23 October 2011.
  2. Handbook of Mineralogy
  3. Webmineral
  4. ^ Mindat
  5. *Hurlbut, Cornelius S. and Klein, Cornelis, 1985, Manual of Mineralogy, Wiley, 20th ed., pp. 459-460 ISBN 0-471-80580-7
  6. Deer, W. A. (2004). Framework silicates: silica minerals, feldspathoids and the zeolites (2. ed.). London: Geological Soc. p. 296. ISBN 1-86239-144-0.
  7. D'Andraba (1800). "Des caractères et des propriétés de plusieurs nouveaux minérauxde Suède et de Norwège , avec quelques observations chimiques faites sur ces substances". Journal de chimie et de physique. 51: 239.
  8. Sowerby, James (1811). Exotic mineralogy: Or, Coloured figures of foreign minerals: As a supplement to British mineralogy.

External links

Lithium compounds (list)
Inorganic (list)
Organic (soaps)
Minerals
Hypothetical
Other Li-related
Categories: